BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Joergensen RG. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol Fertil Soils 2018;54:559-68. [DOI: 10.1007/s00374-018-1288-3] [Cited by in Crossref: 73] [Cited by in F6Publishing: 26] [Article Influence: 18.3] [Reference Citation Analysis]
Number Citing Articles
1 Fan Y, Yang L, Zhong X, Yang Z, Lin Y, Guo J, Chen G, Yang Y. N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest. Geoderma 2020;375:114470. [DOI: 10.1016/j.geoderma.2020.114470] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
2 Wang B, Liang C, Yao H, Yang E, An S. The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration. CATENA 2021;207:105622. [DOI: 10.1016/j.catena.2021.105622] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
3 Ding X, Zhang B, Chen Q, He H, Horwath WR, Zhang X. Grassland conversion to cropland decreased microbial assimilation of mineral N into their residues in a Chernozem soil. Biol Fertil Soils 2021;57:913-24. [DOI: 10.1007/s00374-021-01581-1] [Reference Citation Analysis]
4 Murugan R, Djukic I, Keiblinger K, Zehetner F, Bierbaumer M, Zechmeister-bolternstern S, Joergernsen RG. Spatial distribution of microbial biomass and residues across soil aggregate fractions at different elevations in the Central Austrian Alps. Geoderma 2019;339:1-8. [DOI: 10.1016/j.geoderma.2018.12.018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 7.7] [Reference Citation Analysis]
5 Liao S, Tan S, Peng Y, Wang D, Ni X, Yue K, Wu F, Yang Y. Increased microbial sequestration of soil organic carbon under nitrogen deposition over China’s terrestrial ecosystems. Ecol Process 2020;9. [DOI: 10.1186/s13717-020-00260-7] [Reference Citation Analysis]
6 Luo R, Kuzyakov Y, Zhu B, Qiang W, Zhang Y, Pang X. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Glob Chang Biol 2022. [PMID: 35445477 DOI: 10.1111/gcb.16205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Gao W, Wang Q, Zhu X, Liu Z, Li N, Xiao J, Sun X, Yin H. The vertical distribution pattern of microbial- and plant-derived carbon in the rhizosphere in alpine coniferous forests. Rhizosphere 2021;20:100436. [DOI: 10.1016/j.rhisph.2021.100436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Guo Z, Zhang X, Dungait JAJ, Green SM, Wen X, Quine TA. Contribution of soil microbial necromass to SOC stocks during vegetation recovery in a subtropical karst ecosystem. Sci Total Environ 2021;761:143945. [PMID: 33360125 DOI: 10.1016/j.scitotenv.2020.143945] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Xu Y, Gao X, Liu Y, Li S, Liang C, Lal R, Wang J. Differential accumulation patterns of microbial necromass induced by maize root vs. shoot residue addition in agricultural Alfisols. Soil Biology and Biochemistry 2022;164:108474. [DOI: 10.1016/j.soilbio.2021.108474] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Moran-rodas VE, Chavannavar SV, Joergensen RG, Wachendorf C. Microbial response of distinct soil types to land-use intensification at a South-Indian rural-urban interface. Plant Soil. [DOI: 10.1007/s11104-021-05292-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hu J, Huang C, Zhou S, Liu X, Dijkstra FA. Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: A global meta-analysis. Soil Biology and Biochemistry 2022;165:108500. [DOI: 10.1016/j.soilbio.2021.108500] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Meyer S, Grüning MM, Beule L, Karlovsky P, Joergensen RG, Sundrum A. Soil N2O flux and nitrification and denitrification gene responses to feed-induced differences in the composition of dairy cow faeces. Biol Fertil Soils 2021;57:767-79. [DOI: 10.1007/s00374-021-01566-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Beuschel R, Piepho H, Joergensen RG, Wachendorf C. Similar spatial patterns of soil quality indicators in three poplar-based silvo-arable alley cropping systems in Germany. Biol Fertil Soils 2019;55:1-14. [DOI: 10.1007/s00374-018-1324-3] [Cited by in Crossref: 21] [Article Influence: 5.3] [Reference Citation Analysis]
14 Yan D, Long X, Ye L, Zhang G, Hu A, Wang D, Ding S. Effects of salinity on microbial utilization of straw carbon and microbial residues retention in newly reclaimed coastal soil. European Journal of Soil Biology 2021;107:103364. [DOI: 10.1016/j.ejsobi.2021.103364] [Reference Citation Analysis]
15 Chen J, Wang H, Hu G, Li X, Dong Y, Zhuge Y, He H, Zhang X. Distinct accumulation of bacterial and fungal residues along a salinity gradient in coastal salt-affected soils. Soil Biology and Biochemistry 2021;158:108266. [DOI: 10.1016/j.soilbio.2021.108266] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Ni X, Liao S, Tan S, Wang D, Peng Y, Yue K, Wu F, Yang Y. A quantitative assessment of amino sugars in soil profiles. Soil Biology and Biochemistry 2020;143:107762. [DOI: 10.1016/j.soilbio.2020.107762] [Cited by in Crossref: 16] [Article Influence: 8.0] [Reference Citation Analysis]
17 Koishi A, Bragazza L, Maltas A, Guillaume T, Sinaj S. Long-Term Effects of Organic Amendments on Soil Organic Matter Quantity and Quality in Conventional Cropping Systems in Switzerland. Agronomy 2020;10:1977. [DOI: 10.3390/agronomy10121977] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
18 Tan W, Wang S, Liu N, Xi B. Tracing bacterial and fungal necromass dynamics of municipal sludge in landfill bioreactors using biomarker amino sugars. Sci Total Environ 2020;741:140513. [PMID: 32887002 DOI: 10.1016/j.scitotenv.2020.140513] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Wang Q, Zhang Z, Zhu X, Liu Z, Li N, Xiao J, Liu Q, Yin H. Absorptive roots drive a larger microbial carbon pump efficacy than transport roots in alpine coniferous forests. Journal of Ecology. [DOI: 10.1111/1365-2745.13899] [Reference Citation Analysis]
20 Zhu X, Jackson RD, DeLucia EH, Tiedje JM, Liang C. The soil microbial carbon pump: From conceptual insights to empirical assessments. Glob Chang Biol 2020;26:6032-9. [PMID: 32844509 DOI: 10.1111/gcb.15319] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
21 Coonan EC, Kirkby CA, Kirkegaard JA, Amidy MR, Strong CL, Richardson AE. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutr Cycl Agroecosyst 2020;117:273-98. [DOI: 10.1007/s10705-020-10076-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
22 Ding X, Chen S, Zhang B, He H, Filley TR, Horwath WR. Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau. Biol Fertil Soils 2020;56:881-92. [DOI: 10.1007/s00374-020-01474-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
23 Yuan Y, Li Y, Mou Z, Kuang L, Wu W, Zhang J, Wang F, Hui D, Peñuelas J, Sardans J, Lambers H, Wang J, Kuang Y, Li Z, Liu Z. Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. Glob Chang Biol 2021;27:454-66. [PMID: 33068453 DOI: 10.1111/gcb.15407] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wang B, An S, Liang C, Liu Y, Kuzyakov Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry 2021;162:108422. [DOI: 10.1016/j.soilbio.2021.108422] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
25 Joergensen RG. Phospholipid fatty acids in soil—drawbacks and future prospects. Biol Fertil Soils 2022;58:1-6. [DOI: 10.1007/s00374-021-01613-w] [Reference Citation Analysis]
26 Frederiksen CØ, Cohn MT, Skov LK, Schmidt EGW, Schnorr KM, Buskov S, Leppänen M, Maasilta I, Perez-Calvo E, Lopez-Ulibarri R, Klausen M. A muramidase from Acremonium alcalophilum hydrolyse peptidoglycan found in the gastrointestinal tract of broiler chickens. J Ind Microbiol Biotechnol 2021;48:kuab008. [PMID: 33693885 DOI: 10.1093/jimb/kuab008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Zhou J, Zhang J, Lambers H, Wu J, Qin G, Li Y, Li Y, Li Z, Wang J, Wang F. Intensified rainfall in the wet season alters the microbial contribution to soil carbon storage. Plant Soil. [DOI: 10.1007/s11104-022-05389-2] [Reference Citation Analysis]
28 Khan KS, Joergensen RG. Stoichiometry of the soil microbial biomass in response to amendments with varying C/N/P/S ratios. Biol Fertil Soils 2019;55:265-74. [DOI: 10.1007/s00374-019-01346-x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
29 Fuhrmann I, Maarastawi S, Neumann J, Amelung W, Frindte K, Knief C, Lehndorff E, Wassmann R, Siemens J. Preferential flow pathways in paddy rice soils as hot spots for nutrient cycling. Geoderma 2019;337:594-606. [DOI: 10.1016/j.geoderma.2018.10.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 4.3] [Reference Citation Analysis]
30 Zheng X, Liang C, Chen X, Hu Y, Qiu H, Xia Y, Liu Z, Wei L, Ge T, Gunina A, Su Y. Plant residue-derived hydrophilic and hydrophobic fractions contribute to the formation of soil organic matter. Biol Fertil Soils 2021;57:1021-8. [DOI: 10.1007/s00374-021-01589-7] [Reference Citation Analysis]
31 Yang S, Jansen B, Absalah S, Kalbitz K, Chunga Castro FO, Cammeraat EL. Soil organic carbon content and mineralization controlled by the composition, origin and molecular diversity of organic matter: A study in tropical alpine grasslands. Soil and Tillage Research 2022;215:105203. [DOI: 10.1016/j.still.2021.105203] [Reference Citation Analysis]
32 Xue P, Pei J, Ma N, Wang J. Microbial Residual Nitrogen Distribution in Brown Earth’s Aggregates as Affected by Different Maize Residues and Soil Fertility Levels. Front Environ Sci 2022;10:892039. [DOI: 10.3389/fenvs.2022.892039] [Reference Citation Analysis]
33 Wang Q, Yang L, Song G, Jin S, Hu H, Wu F, Zheng Y, He J. The accumulation of microbial residues and plant lignin phenols are more influenced by fertilization in young than mature subtropical forests. Forest Ecology and Management 2022;509:120074. [DOI: 10.1016/j.foreco.2022.120074] [Reference Citation Analysis]
34 Li X, Huang J, Qu C, Chen W, Chen C, Cai P, Huang Q. Diverse regulations on the accumulation of fungal and bacterial necromass in cropland soils. Geoderma 2022;410:115675. [DOI: 10.1016/j.geoderma.2021.115675] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Reay MK, Knowles TDJ, Jones DL, Evershed RP. Development of Alditol Acetate Derivatives for the Determination of 15N-Enriched Amino Sugars by Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry. Anal Chem 2019;91:3397-404. [PMID: 30741533 DOI: 10.1021/acs.analchem.8b04838] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
36 Zheng T, Xie H, Thompson GL, Bao X, Deng F, Yan E, Zhou X, Liang C. Shifts in microbial metabolic pathway for soil carbon accumulation along subtropical forest succession. Soil Biology and Biochemistry 2021;160:108335. [DOI: 10.1016/j.soilbio.2021.108335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Yang L, Lyu M, Li X, Xiong X, Lin W, Yang Y, Xie J. Decline in the contribution of microbial residues to soil organic carbon along a subtropical elevation gradient. Sci Total Environ 2020;749:141583. [PMID: 32814205 DOI: 10.1016/j.scitotenv.2020.141583] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Shao P, Han H, Sun J, Yang H, Xie H. Salinity Effects on Microbial Derived-C of Coastal Wetland Soils in the Yellow River Delta. Front Ecol Evol 2022;10:872816. [DOI: 10.3389/fevo.2022.872816] [Reference Citation Analysis]
39 Zhu S, Dai G, Ma T, Chen L, Chen D, Lü X, Wang X, Zhu J, Zhang Y, Bai Y, Han X, He J, Feng X. Distribution of lignin phenols in comparison with plant-derived lipids in the alpine versus temperate grassland soils. Plant Soil 2019;439:325-38. [DOI: 10.1007/s11104-019-04035-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
40 Mou Z, Kuang L, Yan B, Zhang X, Wang Y, Liu Z. Influences of sample storage and grinding on the extraction of soil amino sugars. Soil Ecol Lett 2020;2:157-63. [DOI: 10.1007/s42832-020-0031-9] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Schmitt M, Jarosch KA, Hertel R, Spielvogel S, Dippold MA, Loeppmann S. Manufacturing triple-isotopically labeled microbial necromass to track C, N and P cycles in terrestrial ecosystems. Applied Soil Ecology 2022;171:104322. [DOI: 10.1016/j.apsoil.2021.104322] [Reference Citation Analysis]
42 Jia Y, Zhai G, Zhu S, Liu X, Schmid B, Wang Z, Ma K, Feng X. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology and Biochemistry 2021;161:108375. [DOI: 10.1016/j.soilbio.2021.108375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
43 Yang L, Yang Z, Zhong X, Xu C, Lin Y, Fan Y, Wang M, Chen G, Yang Y. Decreases in soil P availability are associated with soil organic P declines following forest conversion in subtropical China. CATENA 2021;205:105459. [DOI: 10.1016/j.catena.2021.105459] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
44 Klink S, Keller AB, Wild AJ, Baumert VL, Gube M, Lehndorff E, Meyer N, Mueller CW, Phillips RP, Pausch J. Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biology and Biochemistry 2022. [DOI: 10.1016/j.soilbio.2022.108634] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 West JR, Cates AM, Ruark MD, Deiss L, Whitman T, Rui Y. Winter rye does not increase microbial necromass contributions to soil organic carbon in continuous corn silage in North Central US. Soil Biology and Biochemistry 2020;148:107899. [DOI: 10.1016/j.soilbio.2020.107899] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Luo Y, Xiao M, Yuan H, Liang C, Zhu Z, Xu J, Kuzyakov Y, Wu J, Ge T, Tang C. Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass. Soil Biology and Biochemistry 2021;160:108345. [DOI: 10.1016/j.soilbio.2021.108345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Wu Y, Kwak J, Karst J, Ni M, Yan Y, Lv X, Xu J, Chang SX. Long-term nitrogen and sulfur deposition increased root-associated pathogen diversity and changed mutualistic fungal diversity in a boreal forest. Soil Biology and Biochemistry 2021;155:108163. [DOI: 10.1016/j.soilbio.2021.108163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
48 Peixoto L, Elsgaard L, Rasmussen J, Kuzyakov Y, Banfield CC, Dippold MA, Olesen JE. Decreased rhizodeposition, but increased microbial carbon stabilization with soil depth down to 3.6 m. Soil Biology and Biochemistry 2020;150:108008. [DOI: 10.1016/j.soilbio.2020.108008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
49 Chen G, Ma S, Tian D, Xiao W, Jiang L, Xing A, Zou A, Zhou L, Shen H, Zheng C, Ji C, He H, Zhu B, Liu L, Fang J. Patterns and determinants of soil microbial residues from tropical to boreal forests. Soil Biology and Biochemistry 2020;151:108059. [DOI: 10.1016/j.soilbio.2020.108059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
50 Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Change Biol 2019;25:3578-90. [DOI: 10.1111/gcb.14781] [Cited by in Crossref: 133] [Cited by in F6Publishing: 60] [Article Influence: 44.3] [Reference Citation Analysis]
51 Ma S, Chen G, Du E, Tian D, Xing A, Shen H, Ji C, Zheng C, Zhu J, Zhu J, Huang H, He H, Zhu B, Fang J. Effects of nitrogen addition on microbial residues and their contribution to soil organic carbon in China's forests from tropical to boreal zone. Environ Pollut 2021;268:115941. [PMID: 33162211 DOI: 10.1016/j.envpol.2020.115941] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
52 Ding X, Zhang B, Filley TR, Tian C, Zhang X, He H. Changes of microbial residues after wetland cultivation and restoration. Biol Fertil Soils 2019;55:405-9. [DOI: 10.1007/s00374-019-01341-2] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
53 Patel KF, Myers-pigg A, Bond-lamberty B, Fansler SJ, Norris CG, Mckever SA, Zheng J, Rod KA, Bailey VL. Soil carbon dynamics during drying vs. rewetting: Importance of antecedent moisture conditions. Soil Biology and Biochemistry 2021;156:108165. [DOI: 10.1016/j.soilbio.2021.108165] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
54 Chen J, Song D, Luan H, Liu D, Wang X, Sun J, Zhou W, Liang G. Living and Dead Microorganisms in Mediating Soil Carbon Stocks Under Long-Term Fertilization in a Rice-Wheat Rotation. Front Microbiol 2022;13:854216. [PMID: 35756033 DOI: 10.3389/fmicb.2022.854216] [Reference Citation Analysis]
55 Ding X, Zhang B, Wei Z, He H, Filley TR. Conversion of grassland into cropland affects microbial residue carbon retention in both surface and subsurface soils of a temperate agroecosystem. Biol Fertil Soils 2020;56:137-43. [DOI: 10.1007/s00374-019-01400-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
56 Zhang W, Zhang X, Bai E, Cui Y, He H, Zhang X. The strategy of microbial utilization of the deposited N in a temperate forest soil. Biol Fertil Soils 2020;56:359-67. [DOI: 10.1007/s00374-019-01427-x] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
57 Ding X, Chen S, Zhang B, Liang C, He H, Horwath WR. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biology and Biochemistry 2019;135:13-9. [DOI: 10.1016/j.soilbio.2019.04.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
58 Liu X, Zhou F, Hu G, Shao S, He H, Zhang W, Zhang X, Li L. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma 2019;333:35-42. [DOI: 10.1016/j.geoderma.2018.07.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
59 Luo R, Kuzyakov Y, Liu D, Fan J, Luo J, Lindsey S, He J, Ding W. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls. Soil Biology and Biochemistry 2020;144:107764. [DOI: 10.1016/j.soilbio.2020.107764] [Cited by in Crossref: 28] [Article Influence: 14.0] [Reference Citation Analysis]
60 Wang B, Huang Y, Li N, Yao H, Yang E, Soromotin AV, Kuzyakov Y, Cheptsov V, Yang Y, An S. Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling. Soil Biology and Biochemistry 2022;167:108607. [DOI: 10.1016/j.soilbio.2022.108607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Ye G, Lin Y, Kuzyakov Y, Liu D, Luo J, Lindsey S, Wang W, Fan J, Ding W. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment. Soil Biology and Biochemistry 2019;134:15-24. [DOI: 10.1016/j.soilbio.2019.03.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 7.3] [Reference Citation Analysis]
62 Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E. Large‐scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Glob Change Biol 2021;27:2039-48. [DOI: 10.1111/gcb.15550] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
63 Pang R, Xu X, Tian Y, Cui X, Ouyang H, Kuzyakov Y. In-situ 13CO2 labeling to trace carbon fluxes in plant-soil-microorganism systems: Review and methodological guideline. Rhizosphere 2021;20:100441. [DOI: 10.1016/j.rhisph.2021.100441] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Xia Y, Chen X, Hu Y, Zheng S, Ning Z, Guggenberger G, He H, Wu J, Su Y. Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China. Biol Fertil Soils 2019;55:767-76. [DOI: 10.1007/s00374-019-01390-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
65 Castaño MIL, Jannoura R, Joergensen RG. Coffee mucilage impact on young coffee seedlings and soil microorganisms. J Plant Nutr Soil Sci 2019;182:782-90. [DOI: 10.1002/jpln.201900139] [Reference Citation Analysis]
66 Barduca L, Wentzel S, Schmidt R, Malagoli M, Joergensen RG. Mineralisation of distinct biogas digestate qualities directly after application to soil. Biol Fertil Soils 2021;57:235-43. [DOI: 10.1007/s00374-020-01521-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Liang C. Soil microbial carbon pump: Mechanism and appraisal. Soil Ecol Lett 2020;2:241-54. [DOI: 10.1007/s42832-020-0052-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
68 Liang C, Kästner M, Joergensen RG. Microbial necromass on the rise: The growing focus on its role in soil organic matter development. Soil Biology and Biochemistry 2020;150:108000. [DOI: 10.1016/j.soilbio.2020.108000] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
69 Hu G, Zhao Y, Liu X, Zhou F, Zhang W, Shao S, He H, Zhang X. Comparing microbial transformation of maize residue‐N and fertilizer‐N in soil using amino sugar‐specific 15 N analysis. Eur J Soil Sci 2020;71:252-64. [DOI: 10.1111/ejss.12859] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
70 Ma L, Ju Z, Fang Y, Vancov T, Gao Q, Wu D, Zhang A, Wang Y, Hu C, Wu W, Du Z. Soil warming and nitrogen addition facilitates lignin and microbial residues accrual in temperate agroecosystems. Soil Biology and Biochemistry 2022. [DOI: 10.1016/j.soilbio.2022.108693] [Reference Citation Analysis]
71 Zhang X, Dai G, Ma T, Liu N, Hu H, Ma W, Zhang J, Wang Z, Peterse F, Feng X. Links between microbial biomass and necromass components in the top- and subsoils of temperate grasslands along an aridity gradient. Geoderma 2020;379:114623. [DOI: 10.1016/j.geoderma.2020.114623] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
72 Angst G, Mueller KE, Nierop KG, Simpson MJ. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry 2021;156:108189. [DOI: 10.1016/j.soilbio.2021.108189] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 18.0] [Reference Citation Analysis]
73 Su F, Chen X, Zhang L, Hao M, Wei X. Dynamics of microbial residues in highland agroecosystems as affected by cropping systems and fertilisation in a 31‐year‐long experiment. European J Soil Science. [DOI: 10.1111/ejss.13205] [Reference Citation Analysis]
74 Yang L, Chen S, Li Y, Wang Q, Zhong X, Yang Z, Lin C, Yang Y. Conversion of Natural Evergreen Broadleaved Forests Decreases Soil Organic Carbon but Increases the Relative Contribution of Microbial Residue in Subtropical China. Forests 2019;10:468. [DOI: 10.3390/f10060468] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
75 Li X, Li Z, Zhang X, Xia L, Zhang W, Ma Q, He H. Disentangling immobilization of nitrate by fungi and bacteria in soil to plant residue amendment. Geoderma 2020;374:114450. [DOI: 10.1016/j.geoderma.2020.114450] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
76 Li T, Zhang J, Wang X, Hartley IP, Zhang J, Zhang Y. Fungal necromass contributes more to soil organic carbon and more sensitive to land use intensity than bacterial necromass. Applied Soil Ecology 2022;176:104492. [DOI: 10.1016/j.apsoil.2022.104492] [Reference Citation Analysis]
77 Ma S, Chen G, Tian D, Du E, Xiao W, Jiang L, Zhou Z, Zhu J, He H, Zhu B, Fang J. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma 2020;361:114034. [DOI: 10.1016/j.geoderma.2019.114034] [Cited by in Crossref: 19] [Article Influence: 9.5] [Reference Citation Analysis]
78 Bhattacharyya SS, Ros GH, Furtak K, Iqbal HMN, Parra-Saldívar R. Soil carbon sequestration - An interplay between soil microbial community and soil organic matter dynamics. Sci Total Environ 2022;815:152928. [PMID: 34999062 DOI: 10.1016/j.scitotenv.2022.152928] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Bhople P, Keiblinger K, Djukic I, Liu D, Zehetner F, Zechmeister-boltenstern S, Georg Joergensen R, Murugan R. Microbial necromass formation, enzyme activities and community structure in two alpine elevation gradients with different bedrock types. Geoderma 2021;386:114922. [DOI: 10.1016/j.geoderma.2020.114922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
80 Ni X, Liao S, Tan S, Peng Y, Wang D, Yue K, Wu F, Yang Y, Xu X. The vertical distribution and control of microbial necromass carbon in forest soils. Global Ecol Biogeogr 2020;29:1829-39. [DOI: 10.1111/geb.13159] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 8.5] [Reference Citation Analysis]
81 Liu Z, Liu X, Wu X, Bian R, Liu X, Zheng J, Zhang X, Cheng K, Li L, Pan G. Long-term elevated CO2 and warming enhance microbial necromass carbon accumulation in a paddy soil. Biol Fertil Soils 2021;57:673-84. [DOI: 10.1007/s00374-021-01557-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Zhang H, Guo Y, Song C, Song Y, Wang X, Sun L, Gong C. Six-year warming decreased amino sugar accumulation in the deep rhizosphere soil of permafrost peatland. Applied Soil Ecology 2022;171:104316. [DOI: 10.1016/j.apsoil.2021.104316] [Reference Citation Analysis]
83 Wang S, Redmile-gordon M, Shahbaz M, Ge T, Zhang M, Wu Y, Liu J, Huang Q, Cai P. Microbial formation and stabilisation of soil organic carbon is regulated by carbon substrate identity and mineral composition. Geoderma 2022;414:115762. [DOI: 10.1016/j.geoderma.2022.115762] [Reference Citation Analysis]
84 Ma S, Zhu B, Chen G, Ni X, Zhou L, Su H, Cai Q, Chen X, Zhu J, Ji C, Li Y, Fang J. Loss of soil microbial residue carbon by converting a tropical forest to tea plantation. Sci Total Environ 2021;:151742. [PMID: 34808187 DOI: 10.1016/j.scitotenv.2021.151742] [Reference Citation Analysis]
85 Shao P, Liang C, Lynch L, Xie H, Bao X. Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biology and Biochemistry 2019;131:182-90. [DOI: 10.1016/j.soilbio.2019.01.012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 10.7] [Reference Citation Analysis]