BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Eur Radiol 2021;31:4576-86. [PMID: 33447862 DOI: 10.1007/s00330-020-07562-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang L, Duan S, Qi Q, Li Q, Ren S, Liu S, Mao B, Zhang Y, Wang S, Yang L, Liu R, Liu L, Li Y, Li N, Zhang L. Noninvasive Prediction of Ki‐67 Expression in Hepatocellular Carcinoma Using Machine Learning‐Based Ultrasomics. J of Ultrasound Medicine 2022. [DOI: 10.1002/jum.16126] [Reference Citation Analysis]
2 Li W, Dong Y, Liu W, Tang Z, Sun C, Lowe S, Chen S, Bentley R, Zhou Q, Xu C, Li W, Wang B, Wang H, Dong S, Hu Z, Liu Q, Cai X, Feng X, Zhao W, Yin C. A deep belief network-based clinical decision system for patients with osteosarcoma. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1003347] [Reference Citation Analysis]
3 Liu F, Yin J, Wang Z, Cheng K, Song C, Cai W, Guo D, Gao S, Jiang Y, Liu Z. The significance of cellular senescence hub genes in the diagnosis and subtype classification of a comprehensive database of gene expression in intervertebral disc degeneration.. [DOI: 10.21203/rs.3.rs-2256275/v1] [Reference Citation Analysis]
4 Lu W, Zhang D, Zhang Y, Qian X, Qian C, Wei Y, Xia Z, Ding W, Ni X. Ultrasound Radiomics Nomogram to Diagnose Sub-Centimeter Thyroid Nodules Based on ACR TI-RADS. Cancers 2022;14:4826. [DOI: 10.3390/cancers14194826] [Reference Citation Analysis]
5 Pellat A, Barat M, Coriat R, Soyer P, Dohan A. Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagnostic and Interventional Imaging 2022. [DOI: 10.1016/j.diii.2022.10.001] [Reference Citation Analysis]
6 Lin M, Tang X, Cao L, Liao Y, Zhang Y, Zhou J. Using ultrasound radiomics analysis to diagnose cervical lymph node metastasis in patients with nasopharyngeal carcinoma. Eur Radiol 2022. [PMID: 36070091 DOI: 10.1007/s00330-022-09122-6] [Reference Citation Analysis]
7 Zhang L, Qi Q, Li Q, Ren S, Liu S, Mao B, Li X, Wu Y, Yang L, Liu L, Li Y, Duan S, Zhang L. Ultrasomics prediction for cytokeratin 19 expression in hepatocellular carcinoma: A multicenter study. Front Oncol 2022;12:994456. [DOI: 10.3389/fonc.2022.994456] [Reference Citation Analysis]
8 Bi Q, Wang Y, Deng Y, Liu Y, Pan Y, Song Y, Wu Y, Wu K. Different multiparametric MRI-based radiomics models for differentiating stage IA endometrial cancer from benign endometrial lesions: A multicenter study. Front Oncol 2022;12:939930. [DOI: 10.3389/fonc.2022.939930] [Reference Citation Analysis]
9 Zhu L, Huang R, Li M, Fan Q, Zhao X, Wu X, Dong F. Machine Learning-Based Ultrasound Radiomics for Evaluating the Function of Transplanted Kidneys. Ultrasound Med Biol 2022;48:1441-52. [PMID: 35599077 DOI: 10.1016/j.ultrasmedbio.2022.03.007] [Reference Citation Analysis]
10 Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14(4): 765-793 [DOI: 10.4251/wjgo.v14.i4.765] [Reference Citation Analysis]
11 Huang W, Yang W, Zhang Z, Xi C, Wang Z, Li Y. Liver function classification based on local direction number and non-local binary pattern. Multimed Tools Appl. [DOI: 10.1007/s11042-022-12986-x] [Reference Citation Analysis]
12 Wang F, Wang D, Xu Y, Jiang H, Liu Y, Zhang J. Potential of the Non-Contrast-Enhanced Chest CT Radiomics to Distinguish Molecular Subtypes of Breast Cancer: A Retrospective Study. Front Oncol 2022;12:848726. [PMID: 35387125 DOI: 10.3389/fonc.2022.848726] [Reference Citation Analysis]
13 Zhong F, Liu Z, An W, Wang B, Zhang H, Liu Y, Liao M. Radiomics Study for Discriminating Second Primary Lung Cancers From Pulmonary Metastases in Pulmonary Solid Lesions. Front Oncol 2021;11:801213. [PMID: 35047410 DOI: 10.3389/fonc.2021.801213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liang T, Shen J, Zhang S, Cong S, Liu J, Pei S, Shang S, Huang C. Using Ultrasound-Based Multilayer Perceptron to Differentiate Early Breast Mucinous Cancer and its Subtypes From Fibroadenoma. Front Oncol 2021;11:724656. [PMID: 34926246 DOI: 10.3389/fonc.2021.724656] [Reference Citation Analysis]
15 Zhang Y, Zhang Y, Zhang Y, Wang D, Peng F, Cui S, Yang Z. Ultrasonic image fibrosis staging based on machine learning for chronic liver disease. 2021 IEEE International Conference on Medical Imaging Physics and Engineering (ICMIPE) 2021. [DOI: 10.1109/icmipe53131.2021.9698912] [Reference Citation Analysis]
16 Bartolotta TV, Taibbi A, Randazzo A, Gagliardo C. New frontiers in liver ultrasound: From mono to multi parametricity. World J Gastrointest Oncol 2021; 13(10): 1302-1316 [PMID: 34721768 DOI: 10.4251/wjgo.v13.i10.1302] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]