BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hilchie AL, Hoskin DW, Power Coombs MR. Anticancer Activities of Natural and Synthetic Peptides. In: Matsuzaki K, editor. Antimicrobial Peptides. Singapore: Springer; 2019. pp. 131-47. [DOI: 10.1007/978-981-13-3588-4_9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Vincent SA, Mathew P, Antony SP. Shrimp Antimicrobial Peptides: A Multitude of Possibilities. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10459-1] [Reference Citation Analysis]
2 Abuei H, Pirouzfar M, Mojiri A, Behzad-Behbahani A, Kalantari T, Bemani P, Farhadi A. Maximizing the recovery of the native p28 bacterial peptide with improved activity and maintained solubility and stability in Escherichia coli BL21 (DE3). J Microbiol Methods 2022;200:106560. [PMID: 36031157 DOI: 10.1016/j.mimet.2022.106560] [Reference Citation Analysis]
3 Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022;13:944147. [DOI: 10.3389/fphar.2022.944147] [Reference Citation Analysis]
4 Ranjbar HH, Abari AH, Ghasemi SM, Ghorbani N. Antioxidant and Anticancer Effects of Epsilon-Poly-L-lysine Produced by Two Novel Strains of Paenibacillus polymyxa HS6 and Stenotrophomonas maltophilia YS8. Biotechnol Bioproc E. [DOI: 10.1007/s12257-022-0065-1] [Reference Citation Analysis]
5 Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022;:1-40. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Reference Citation Analysis]
6 Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against covid-19. Mol Biol Rep 2022. [PMID: 35606604 DOI: 10.1007/s11033-022-07572-1] [Reference Citation Analysis]
7 Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022;12:e822. [PMID: 35593206 DOI: 10.1002/ctm2.822] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Hwang JS, Kim SG, Shin TH, Jang YE, Kwon DH, Lee G. Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics 2022;14:997. [DOI: 10.3390/pharmaceutics14050997] [Reference Citation Analysis]
9 Antony A, Olakkaran S, Purayil AK, Shekh S, Gowd KH, Gurushankara HP. Antitumor activity of Tigerinin-1: Necroptosis mediates toxicity in A549 cells. Biochimica et Biophysica Acta (BBA) - General Subjects 2022. [DOI: 10.1016/j.bbagen.2022.130182] [Reference Citation Analysis]
10 Zornic S, Lukovic B, Jevtovic A, Dimitrijevic JD, Markovic BS, Pantic J, Radosavljevic GD, Arsenijevic N. Overview of Host Defense Peptides with Promising Anti-Breast Cancer Activity. Serbian Journal of Experimental and Clinical Research 2022;0. [DOI: 10.2478/sjecr-2021-0052] [Reference Citation Analysis]
11 Saleh RO, Essia INA, Jasim SA. The Anticancer Effect of a Conjugated Antimicrobial Peptide Against Colorectal Cancer (CRC) Cells. J Gastrointest Cancer 2022. [PMID: 35217999 DOI: 10.1007/s12029-021-00799-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Booth V. Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides. Front Med Technol 2020;2:621572. [PMID: 35047897 DOI: 10.3389/fmedt.2020.621572] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Lu Y, Ma J, Lin J, Tian Y, Ma Y, Wang W, Li J, Zhang H, Jiao P. Cell membrane breakage and triggering T cell infiltration are involved in human telomerase reverse transcriptase (hTERT) promoter-driven novel peptide KK-64 for liver cancer gene therapy. Bioengineered 2021;12:12708-21. [PMID: 34898368 DOI: 10.1080/21655979.2021.2010314] [Reference Citation Analysis]
14 Manteca A, Gadea A, Van Assche D, Cossard P, Gillard-Bocquet M, Beneyton T, Innis CA, Baret JC. Directed Evolution in Drops: Molecular Aspects and Applications. ACS Synth Biol 2021;10:2772-83. [PMID: 34677942 DOI: 10.1021/acssynbio.1c00313] [Reference Citation Analysis]
15 Chantawannakul J, Chatpattanasiri P, Wattayagorn V, Kongsema M, Noikaew T, Chumnanpuen P. Virtual Screening for Biomimetic Anti-Cancer Peptides from Cordyceps militaris Putative Pepsinized Peptidome and Validation on Colon Cancer Cell Line. Molecules 2021;26:5767. [PMID: 34641308 DOI: 10.3390/molecules26195767] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ng CX, Le CF, Tor YS, Lee SH. Hybrid Anticancer Peptides DN1 and DN4 Exert Selective Cytotoxicity Against Hepatocellular Carcinoma Cells by Inducing Both Intrinsic and Extrinsic Apoptotic Pathways. Int J Pept Res Ther 2021;27:2757-75. [DOI: 10.1007/s10989-021-10288-8] [Reference Citation Analysis]
17 Garizo AR, Coelho LF, Pinto S, Dias TP, Fernandes F, Bernardes N, Fialho AM. The Azurin-Derived Peptide CT-p19LC Exhibits Membrane-Active Properties and Induces Cancer Cell Death. Biomedicines 2021;9:1194. [PMID: 34572379 DOI: 10.3390/biomedicines9091194] [Reference Citation Analysis]
18 Quemé-Peña M, Juhász T, Kohut G, Ricci M, Singh P, Szigyártó IC, Papp ZI, Fülöp L, Beke-Somfai T. Membrane Association Modes of Natural Anticancer Peptides: Mechanistic Details on Helicity, Orientation, and Surface Coverage. Int J Mol Sci 2021;22:8613. [PMID: 34445319 DOI: 10.3390/ijms22168613] [Reference Citation Analysis]
19 Orafaie A, Bahrami AR, Matin MM. Use of anticancer peptides as an alternative approach for targeted therapy in breast cancer: a review. Nanomedicine (Lond) 2021;16:415-33. [PMID: 33615876 DOI: 10.2217/nnm-2020-0352] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Li X, Cui H, Suyila Q, Yang X, Wu X, Su X. The hydrogels based on peptide/collagen as potential multifunctional materials for soft tissue filling and inhibition of tumor growth. International Journal of Polymeric Materials and Polymeric Biomaterials 2022;71:589-601. [DOI: 10.1080/00914037.2020.1867134] [Reference Citation Analysis]
21 Pérez-Peinado C, Valle J, Freire JM, Andreu D. Tumor Cell Attack by Crotalicidin (Ctn) and Its Fragment Ctn[15-34]: Insights into Their Dual Membranolytic and Intracellular Targeting Mechanism. ACS Chem Biol 2020;15:2945-57. [PMID: 33021779 DOI: 10.1021/acschembio.0c00596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Sandhu G, Morrow MR, Booth V. Roles of histidine charge and cardiolipin in membrane disruption by antimicrobial peptides Gaduscidin-1 and Gaduscidin-2. Biochim Biophys Acta Biomembr 2020;1862:183444. [PMID: 32822647 DOI: 10.1016/j.bbamem.2020.183444] [Reference Citation Analysis]
23 Shen W, Zhang Y, Wan P, An L, Zhang P, Xiao C, Chen X. Antineoplastic Drug-Free Anticancer Strategy Enabled by Host-Defense-Peptides-Mimicking Synthetic Polypeptides. Adv Mater 2020;32:e2001108. [PMID: 32700437 DOI: 10.1002/adma.202001108] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 14.5] [Reference Citation Analysis]
24 Feng JP, Zhu R, Jiang F, Xie J, Gao C, Li M, Jin H, Fu D. Melittin-encapsulating peptide hydrogels for enhanced delivery of impermeable anticancer peptides. Biomater Sci 2020;8:4559-69. [PMID: 32672773 DOI: 10.1039/c9bm02080b] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 2020;10:200004. [PMID: 32692959 DOI: 10.1098/rsob.200004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
26 Li X, Gao B, Su X. Anticancer bioactive peptide combined with docetaxel and its mechanism in the treatment of breast cancer. Exp Ther Med 2020;20:1917-24. [PMID: 32782500 DOI: 10.3892/etm.2020.8902] [Reference Citation Analysis]
27 Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020;27:1174-205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
28 Zhu K, Zhou L, Zou M, Ning S, Liu S, Zhou Y, Du K, Zhang X, Xia X. 18-GA-Suc Modified Liposome Loading Cantharidin for Augmenting Hepatic Specificity: Preparation, Characterization, Antitumor Effects, and Liver-Targeting Efficiency. J Pharm Sci 2020;109:2038-47. [PMID: 32173319 DOI: 10.1016/j.xphs.2020.03.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Vernen F, Craik DJ, Lawrence N, Troeira Henriques S. Cyclic Analogues of Horseshoe Crab Peptide Tachyplesin I with Anticancer and Cell Penetrating Properties. ACS Chem Biol 2019;14:2895-908. [PMID: 31714739 DOI: 10.1021/acschembio.9b00782] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
30 Brady D, Grapputo A, Romoli O, Sandrelli F. Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. Int J Mol Sci 2019;20:E5862. [PMID: 31766730 DOI: 10.3390/ijms20235862] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 11.7] [Reference Citation Analysis]
31 Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, Tarhriz V. Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action. Int J Pept Res Ther 2020;26:1451-63. [DOI: 10.1007/s10989-019-09946-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]