BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang Y, Liu M, Wu C, Gao J, Li M, Xing Z, Li Z, Zhou W. Hollow Nanoboxes Cu2-x S@ZnIn2 S4 Core-Shell S-Scheme Heterojunction with Broad-Spectrum Response and Enhanced Photothermal-Photocatalytic Performance. Small 2022;:e2202544. [PMID: 35691938 DOI: 10.1002/smll.202202544] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu J, Liu M, Zheng S, Liu X, Yao S, Jing F, Chen G. Interfacial intimacy and internal electric field modulated S-scheme Sv-ZnS/ZnIn(2)S(4) photocatalyst for efficient H(2) evolution and CO(2) reduction. J Colloid Interface Sci 2023;635:284-94. [PMID: 36587580 DOI: 10.1016/j.jcis.2022.12.131] [Reference Citation Analysis]
2 Wang C, Liu Y, Li Y, Sun X, Xu L, Huang W. Facile defect construction of TiO2 nanotube for excellent photocatalytic degradation of tetracycline under visible light. Journal of Photochemistry and Photobiology A: Chemistry 2023;437:114475. [DOI: 10.1016/j.jphotochem.2022.114475] [Reference Citation Analysis]
3 Zhang P, Yin X, Zhang D, Guo P, Liu W, Wang R, Zhang Z, Qiu S. MOF templated to construct hierarchical ZnIn2S4-In2S3 hollow nanotube for enhancing photocatalytic performance. Chemical Engineering Journal 2023;458:141394. [DOI: 10.1016/j.cej.2023.141394] [Reference Citation Analysis]
4 Wang Y, Xu K, Fan L, Jiang Y, Yue Y, Jia H. B-Doped g-C3N4/Black TiO2 Z-Scheme Nanocomposites for Enhanced Visible-Light-Driven Photocatalytic Performance. Nanomaterials 2023;13:518. [DOI: 10.3390/nano13030518] [Reference Citation Analysis]
5 Zhang T, Yan A, Luo S, Huang F, Zhang J, Gao Y, Zhao W, Liu Z, Zhao X. Cu-Doped ZnIn2S4/NixP Composites with Enhanced Carrier Dynamics and Photocatalytic Hydrogen Production Performance. ACS Appl Energy Mater 2023. [DOI: 10.1021/acsaem.2c03548] [Reference Citation Analysis]
6 Pan J, Guan Y, Zhang Y, Xu Z, Han S, Tang H, Yan X, Liu H, Lu Q. Near-Infrared-Induced Photothermal Enhanced Photocatalytic H(2) Production for 3D/2D Heterojunctions of Snowflake-like CuS/g-C(3)N(4) Nanosheets. Inorg Chem 2023;62:624-35. [PMID: 36571242 DOI: 10.1021/acs.inorgchem.2c04000] [Reference Citation Analysis]
7 Xiang D, Hao X, Yang X, Jin Z. Construction of Zn Vacancy mediated ZnS/Cu2-xS heterostructure via Cation Exchange Reactions for Broadband Photocatalytic Water Splitting. Journal of Photochemistry and Photobiology A: Chemistry 2023. [DOI: 10.1016/j.jphotochem.2023.114553] [Reference Citation Analysis]
8 Yu L, Wang H, Huang Q, Liu H, Chen Q, Yuan B, Li Q, Zhao X, Tang J, Zhao D. One-pot microwave synthesized high-performance BiVO4/InVO4 heterojunction for photocatalytic reduction of Cr6+. Separation and Purification Technology 2023. [DOI: 10.1016/j.seppur.2023.123143] [Reference Citation Analysis]
9 Yan X, Wang B, Zhao J, Liu G, Ji M, Zhang X, Chu PK, Li H, Xia J. Hierarchical columnar ZnIn2S4/BiVO4 Z-scheme heterojunctions with carrier highway boost photocatalytic mineralization of antibiotics. Chemical Engineering Journal 2023;452:139271. [DOI: 10.1016/j.cej.2022.139271] [Reference Citation Analysis]
10 Long C, Dong X, Huang J. Latest Progress on Photocatalytic H2 Production by Water Splitting and H2 Production Coupled with Selective Oxidation of Organics over ZnIn2S4-Based Photocatalysts. Energy Fuels 2022. [DOI: 10.1021/acs.energyfuels.2c03588] [Reference Citation Analysis]
11 Du J, Ma S, Zhang N, Liu W, Lv M, Ni T, An Z, Li K, Bai Y. Efficient photocatalytic organic degradation and disinfection performance for Ag/AgFeO2/g-C3N4 nanocomposites under visible-light: Insights into the photocatalysis mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;654:130094. [DOI: 10.1016/j.colsurfa.2022.130094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Liu J, Wu M, Ye H, Xie Y, Ma Y, Liu L. Strong interaction between sulfur sites and oxygen vacancies in Z-scheme ZnIn2S4/TiO2-x heterojunction for improved photocatalytic hydrogen yield and stability. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140722] [Reference Citation Analysis]
13 Zhong T, Wen H, Ruan J, Li B, Guo Y, Lin Z. In Situ Construction of Closely Bonded S-Scheme BiOI@Bi2O2(OH)(NO3) Heterojunctions for Boosted Visible-Light-Driven Photocatalytic Activity. ACS Appl Energy Mater 2022. [DOI: 10.1021/acsaem.2c03307] [Reference Citation Analysis]
14 Zhou Y, Ye Q, Shi X, Zhang Q, Song Q, Zhou C, Li D, Jiang D. Ni3B as p-Block Element-Modulated Cocatalyst for Efficient Photocatalytic CO2 Reduction. Inorg Chem 2022. [PMID: 36259672 DOI: 10.1021/acs.inorgchem.2c02850] [Reference Citation Analysis]
15 Mi Y, Fang W, Jiang Y, Yang Y, Liu Y, Shangguan W. Recent Advancements in Photocatalysis Coupling by External Physical Fields. Catalysts 2022;12:1042. [DOI: 10.3390/catal12091042] [Reference Citation Analysis]