BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou LL, Guan Q, Li WY, Zhang Z, Li YA, Dong YB. A Ferrocene-Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis. Small 2021;17:e2101368. [PMID: 34216420 DOI: 10.1002/smll.202101368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coordination Chemistry Reviews 2022;455:214360. [DOI: 10.1016/j.ccr.2021.214360] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
2 Xia R, Li C, Yuan X, Wu Q, Jiang B, Xie Z. Facile Preparation of a Thienoisoindigo-Based Nanoscale Covalent Organic Framework with Robust Photothermal Activity for Cancer Therapy. ACS Appl Mater Interfaces 2022;14:19129-38. [PMID: 35446556 DOI: 10.1021/acsami.2c01701] [Reference Citation Analysis]
3 Mal A, Ding H, Li M, Li W, Wang C. Covalent Organic Frameworks with Nanopores for Biological Applications: A Review. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01517] [Reference Citation Analysis]
4 Zhao L, Zhou X, Xie F, Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J, Zhang L. Ferroptosis in cancer and cancer immunotherapy. Cancer Communications 2022;42:88-116. [DOI: 10.1002/cac2.12250] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
5 Shi Z, Zheng J, Tang W, Bai Y, Zhang L, Xuan Z, Sun H, Shao C. Multifunctional Nanomaterials for Ferroptotic Cancer Therapy. Front Chem 2022;10:868630. [DOI: 10.3389/fchem.2022.868630] [Reference Citation Analysis]
6 Sun S, Chen Q, Li Y, Yu Y, Li Z, Lin H. Tumor‐specific and photothermal‐augmented chemodynamic therapy by ferrocene‐carbon dot‐crosslinked nanoparticles. SmartMat. [DOI: 10.1002/smm2.1119] [Reference Citation Analysis]
7 Zhang L, Li CX, Wan SS, Zhang XZ. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022;11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
8 Ma W, Zhang H, Li S, Wang Z, Wu X, Yan R, Geng F, Mu W, Jin Y. A Multifunctional Nanoplatform Based on Fenton-like and Russell Reactions of Cu, Mn Bimetallic Ions Synergistically Enhanced ROS Stress for Improved Chemodynamic Therapy. ACS Biomater Sci Eng 2022;8:1354-66. [PMID: 35230802 DOI: 10.1021/acsbiomaterials.1c01605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Guan Q, Zhou LL, Dong YB. Ferroptosis in cancer therapeutics: a materials chemistry perspective. J Mater Chem B 2021;9:8906-36. [PMID: 34505861 DOI: 10.1039/d1tb01654g] [Reference Citation Analysis]
10 Yao S, Wang Z, Li L. Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.01.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Kim JH, Kang DW, Yun H, Kang M, Singh N, Kim JS, Hong CS. Post-synthetic modifications in porous organic polymers for biomedical and related applications. Chem Soc Rev 2021. [PMID: 34859804 DOI: 10.1039/d1cs00804h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
12 Gao P, Shen X, Liu X, Cui B, Wang M, Wan X, Li N, Tang B. Covalent Organic Framework-Derived Carbonous Nanoprobes for Cancer Cell Imaging. ACS Appl Mater Interfaces 2021;13:41498-506. [PMID: 34435498 DOI: 10.1021/acsami.1c14998] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 You J, Yuan F, Cheng S, Kong Q, Jiang Y, Luo X, Xian Y, Zhang C. AIEgen-Based sp 2 Carbon-Conjugated Covalent Organic Frameworks with High Stability and Emission for Activatable Imaging and Ferroptosis in Target Tumor Cells. Chem Mater . [DOI: 10.1021/acs.chemmater.2c01726] [Reference Citation Analysis]
14 Luo L, Wang H, Tian W, Li X, Zhu Z, Huang R, Luo H. Targeting ferroptosis-based cancer therapy using nanomaterials: strategies and applications. Theranostics 2021;11:9937-52. [PMID: 34815796 DOI: 10.7150/thno.65480] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
15 Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhou L, Guan Q, Zhou W, Kan J, Dong Y. Ambient synthesis of an iminium-linked covalent organic framework for synergetic RNA interference and metabolic therapy of fibrosarcoma. Chem Sci . [DOI: 10.1039/d2sc02297d] [Reference Citation Analysis]
17 Guan Q, Zhou L, Dong Y. Construction of Nanoscale Covalent Organic Frameworks via Photocatalysis‐Involved Cascade Reactions for Tumor‐Selective Treatment. Advanced Therapeutics 2022;5:2100177. [DOI: 10.1002/adtp.202100177] [Reference Citation Analysis]
18 Zhang L, Yang QC, Wang S, Xiao Y, Wan SC, Deng H, Sun ZJ. Engineering Multienzyme-Mimicking Covalent Organic Frameworks as Pyroptosis Inducers for Boosting Antitumor Immunity. Adv Mater 2022;34:e2108174. [PMID: 34918837 DOI: 10.1002/adma.202108174] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
19 Zhu Y, Xu P, Zhang X, Wu D. Emerging porous organic polymers for biomedical applications. Chem Soc Rev . [DOI: 10.1039/d1cs00871d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
20 Li Y, Qin Y, Shang Y, Li Y, Liu F, Luo J, Zhu J, Guo X, Wang Z, Zhao Y. Mechano‐Responsive Leapfrog Micelles Enable Interactive Apoptotic and Ferroptotic Cancer Therapy. Adv Funct Materials. [DOI: 10.1002/adfm.202112000] [Reference Citation Analysis]
21 Zhang S, Zhang J, Fan X, Liu H, Zhu M, Yang M, Zhang X, Zhang H, Yu F. Ionizing Radiation-Induced Ferroptosis Based on Nanomaterials. IJN 2022;Volume 17:3497-507. [DOI: 10.2147/ijn.s372947] [Reference Citation Analysis]
22 Yang F, Fang W, Yang M, Chen W, Xu J, Wang J, Li W, Zhao B, Qiu L, Chen J. Enzyme-loaded glycogen nanoparticles with tumor-targeting Activatable host-guest supramolecule for augmented chemodynamic therapy. Int J Biol Macromol 2022:S0141-8130(22)01615-4. [PMID: 35907454 DOI: 10.1016/j.ijbiomac.2022.07.183] [Reference Citation Analysis]
23 Zaffaroni N, Beretta GL. Nanoparticles for Ferroptosis Therapy in Cancer. Pharmaceutics 2021;13:1785. [PMID: 34834199 DOI: 10.3390/pharmaceutics13111785] [Reference Citation Analysis]
24 Cao C, Wang X, Yang N, Song X, Dong X. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem Sci 2022;13:863-89. [PMID: 35211255 DOI: 10.1039/d1sc05482a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
25 Xie P, Liu J, Yang X, Zhu W, Ye Y. A bifunctional fluorescent probe for imaging lipid droplets polarity/SO2 during ferroptosis. Sensors and Actuators B: Chemical 2022;365:131937. [DOI: 10.1016/j.snb.2022.131937] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]