BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 2019;107:251-85. [PMID: 30358098 DOI: 10.1002/jbm.a.36550] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 9.8] [Reference Citation Analysis]
Number Citing Articles
1 Salek N, Vosoughi S, Roudsari ST, Arani SS, Mehrabi M, Davarkhah R. Theoretical and Experimental Assessment of 161Tb Produced by Irradiation of Bulk and Nanoscale Gd Targets in TRR. Braz J Phys 2023;53:65. [DOI: 10.1007/s13538-023-01283-z] [Reference Citation Analysis]
2 Sankar Satapathy B, Pattnaik S, Keshari Biswal S, Biswal B, Kumar Sahoo P, Bhusan Samal H, Barik B. Recent Advancements in Phyto Component Based Nanocarriers for Improved Treatment of Brain Disorders. Drug Repurposing - Advances, Scopes and Opportunities in Drug Discovery [Working Title] 2023. [DOI: 10.5772/intechopen.110585] [Reference Citation Analysis]
3 de Sousa EMB, Meireles IBDCJ, Vieira LAF, do Apostolos RCR, Marinho JPN, Cipreste MF. Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnology 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Reference Citation Analysis]
4 Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol 2023;14:15. [PMID: 36865684 DOI: 10.1186/s12645-023-00165-y] [Reference Citation Analysis]
5 Lopes van den Broek S, Shalgunov V, García Vázquez R, Beschorner N, Bidesi NSR, Nedergaard M, Knudsen GM, Sehlin D, Syvänen S, Herth MM. Pretargeted Imaging beyond the Blood–Brain Barrier—Utopia or Feasible? Pharmaceuticals 2022;15:1191. [DOI: 10.3390/ph15101191] [Reference Citation Analysis]
6 Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022;6:400-23. [PMID: 36051855 DOI: 10.7150/ntno.74613] [Reference Citation Analysis]
7 Salih S, Alkatheeri A, Alomaim W, Elliyanti A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules 2022;27:5231. [DOI: 10.3390/molecules27165231] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Karageorgou MA, Rapsomanikis AN, Mirković M, Vranješ-Ðurić S, Stiliaris E, Bouziotis P, Stamopoulos D. 99mTc-Labeled Iron Oxide Nanoparticles as Dual-Modality Contrast Agent: A Preliminary Study from Synthesis to Magnetic Resonance and Gamma-Camera Imaging in Mice Models. Nanomaterials (Basel) 2022;12:2728. [PMID: 35957159 DOI: 10.3390/nano12152728] [Reference Citation Analysis]
9 Xiang X, Shi D, Gao J. The Advances and Biomedical Applications of Imageable Nanomaterials. Front Bioeng Biotechnol 2022;10:914105. [DOI: 10.3389/fbioe.2022.914105] [Reference Citation Analysis]
10 Desai P, Rimal R, Sahnoun SEM, Mottaghy FM, Möller M, Morgenroth A, Singh S. Radiolabeled Nanocarriers as Theranostics—Advancement from Peptides to Nanocarriers. Small. [DOI: 10.1002/smll.202200673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Orlov AP, Trofimova TP, Orlova MA. Transition metals, their organic complexes, and radionuclides promising for medical use. Russ Chem Bull 2022;71:415-29. [DOI: 10.1007/s11172-022-3429-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Fu D, Liu X, Zheng X, Zhou M, Wang W, Su G, Liu T, Wang L, Xie Z. Polymer-metal-organic framework hybrids for bioimaging and cancer therapy. Coordination Chemistry Reviews 2022;456:214393. [DOI: 10.1016/j.ccr.2021.214393] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
13 Phua VJX, Yang C, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. Nanomaterials 2022;12:582. [DOI: 10.3390/nano12040582] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Farzin L, Saber R, Sadjadi S, Mohagheghpour E, Sheini A. Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. Journal of Thermal Biology 2022. [DOI: 10.1016/j.jtherbio.2022.103201] [Reference Citation Analysis]
15 Biswas K, Sett A, De D, Bandyopadhyay J, Mohanta YK. Smart Nanomaterials for Bioimaging Applications: An Overview. Bio-Nano Interface 2022. [DOI: 10.1007/978-981-16-2516-9_16] [Reference Citation Analysis]
16 Seniwal B, Thipe VC, Singh S, Fonseca TCF, Freitas de Freitas L. Recent Advances in Brachytherapy Using Radioactive Nanoparticles: An Alternative to Seed-Based Brachytherapy. Front Oncol 2021;11:766407. [PMID: 34900715 DOI: 10.3389/fonc.2021.766407] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
17 Kaushik D, Jangra P, Verma R, Purohit D, Pandey P, Sharma S, Sharma RK. Radiopharmaceuticals: An insight into the latest advances in medical uses and regulatory perspectives. J Biosci 2021;46:27. [DOI: 10.1007/s12038-021-00147-5] [Reference Citation Analysis]
18 Singh A, Chaudhary D, Waghchoure AP, Kalariya RN, Bhosale RS. AIE materials for nucleus imaging. Prog Mol Biol Transl Sci 2021;184:205-18. [PMID: 34749974 DOI: 10.1016/bs.pmbts.2021.07.030] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Taufiq A, Yuliantika D, Sunaryono S, Saputro RE, Hidayat N, Mufti N, Susanto H, Soontaranon S, Nur H. Hierarchical Structure and Magnetic Behavior of Zn-Doped Magnetite Aqueous Ferrofluids Prepared from Natural Sand for Antibacterial Agents. An Acad Bras Cienc 2021;93:e20200774. [PMID: 34705939 DOI: 10.1590/0001-3765202120200774] [Reference Citation Analysis]
20 Díez-Villares S, Pellico J, Gómez-Lado N, Grijalvo S, Alijas S, Eritja R, Herranz F, Aguiar P, de la Fuente M. Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. Int J Nanomedicine 2021;16:5923-35. [PMID: 34475757 DOI: 10.2147/IJN.S316767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Kleynhans J, Sathekge M, Ebenhan T. Obstacles and Recommendations for Clinical Translation of Nanoparticle System-Based Targeted Alpha-Particle Therapy. Materials (Basel) 2021;14:4784. [PMID: 34500873 DOI: 10.3390/ma14174784] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
22 Wu S, Helal-Neto E, Matos APDS, Jafari A, Kozempel J, Silva YJA, Serrano-Larrea C, Alves Junior S, Ricci-Junior E, Alexis F, Santos-Oliveira R. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv 2020;27:1544-61. [PMID: 33118416 DOI: 10.1080/10717544.2020.1837296] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
23 Ramos-membrive R, Erhard Á, Luis de Redín I, Quincoces G, Collantes M, Ecay M, Irache JM, Peñuelas I. In vivo SPECT-CT imaging and characterization of technetium-99m-labeled bevacizumab-loaded human serum albumin pegylated nanoparticles. Journal of Drug Delivery Science and Technology 2021;64:101809. [DOI: 10.1016/j.jddst.2020.101809] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
24 Jaymand M, Davatgaran Taghipour Y, Rezaei A, Derakhshankhah H, Foad Abazari M, Samadian H, Hamblin MR. Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy? Coordination Chemistry Reviews 2021;440:213974. [DOI: 10.1016/j.ccr.2021.213974] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
25 Kim GG, Jang HM, Park SB, So JS, Kim SW. Synthesis of Zr-89-Labeled Folic Acid-Conjugated Silica (SiO2) Microwire as a Tumor Diagnostics Carrier for Positron Emission Tomography. Materials (Basel) 2021;14:3226. [PMID: 34207994 DOI: 10.3390/ma14123226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Moradi MS, Bidabadi BS. Assessment of Single-and Double-Strand Breaks in DNA Induced by Auger Electrons of Radioisotopes Used in Diagnostic and Therapeutic Applications. J Med Phys 2020;45:240-8. [PMID: 33953500 DOI: 10.4103/jmp.JMP_79_19] [Reference Citation Analysis]
27 Qaim SM, Hussain M, Spahn I, Neumaier B. Continuing Nuclear Data Research for Production of Accelerator-Based Novel Radionuclides for Medical Use: A Mini-Review. Front Phys 2021;9:639290. [DOI: 10.3389/fphy.2021.639290] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
28 Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021;600:120485. [PMID: 33744447 DOI: 10.1016/j.ijpharm.2021.120485] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
29 Mikulová MB, Mikuš P. Advances in Development of Radiometal Labeled Amino Acid-Based Compounds for Cancer Imaging and Diagnostics. Pharmaceuticals (Basel) 2021;14:167. [PMID: 33669938 DOI: 10.3390/ph14020167] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
30 Thomsen T, Klok H. Chemical Cell Surface Modification and Analysis of Nanoparticle-Modified Living Cells. ACS Appl Bio Mater 2021;4:2293-306. [DOI: 10.1021/acsabm.0c01619] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
31 Iqbal Z, Arafa EA, Kanwal Z, Murtaza G. Smart solution of severe problems: Radiolabeled nanocarriers for cancer imaging and therapy. Journal of Drug Delivery Science and Technology 2021;61:102205. [DOI: 10.1016/j.jddst.2020.102205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Kim EM, Jeong HJ. Liposomes: Biomedical Applications. Chonnam Med J 2021;57:27-35. [PMID: 33537216 DOI: 10.4068/cmj.2021.57.1.27] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
33 Shaw TK, Khamkat P, Ghosh A, Ghosh MK. Nanotargeted radiopharmaceuticals for cancer theranostics. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00002-5] [Reference Citation Analysis]
34 Doan TKD. Multimodal Imaging with NIR Light. Transparency in Biology 2021. [DOI: 10.1007/978-981-15-9627-8_11] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Shahedi A, Rahighi J, Bolorizadeh MA. An EXAFS study of phenanthroline-holmium complex. Eur Phys J D 2021;75:38. [DOI: 10.1140/epjd/s10053-020-00019-x] [Reference Citation Analysis]
36 Das S, Das MK. Technological challenges of theranostics in oncology. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00014-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Silva F, Cabral Campello MP, Paulo A. Radiolabeled Gold Nanoparticles for Imaging and Therapy of Cancer. Materials (Basel) 2020;14:E4. [PMID: 33375074 DOI: 10.3390/ma14010004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
38 Lee JY, Mushtaq S, Park JE, Shin HS, Lee SY, Jeon J. Radioanalytical Techniques to Quantitatively Assess the Biological Uptake and In Vivo Behavior of Hazardous Substances. Molecules 2020;25:E3985. [PMID: 32882977 DOI: 10.3390/molecules25173985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Crist RM, Dasa SSK, Liu CH, Clogston JD, Dobrovolskaia MA, Stern ST. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1665. [PMID: 32830448 DOI: 10.1002/wnan.1665] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
40 Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021;92:241-69. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
41 Stanković A, Mihailović J, Mirković M, Radović M, Milanović Z, Ognjanović M, Janković D, Antić B, Mijović M, Vranješ-Đurić S, Prijović Ž. Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. Int J Pharm 2020;587:119628. [PMID: 32681867 DOI: 10.1016/j.ijpharm.2020.119628] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
42 Majkowska-Pilip A, Gawęda W, Żelechowska-Matysiak K, Wawrowicz K, Bilewicz A. Nanoparticles in Targeted Alpha Therapy. Nanomaterials (Basel) 2020;10:E1366. [PMID: 32668687 DOI: 10.3390/nano10071366] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
43 Yoon JK, Park BN, Ryu EK, An YS, Lee SJ. Current Perspectives on 89Zr-PET Imaging. Int J Mol Sci 2020;21:E4309. [PMID: 32560337 DOI: 10.3390/ijms21124309] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
44 Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater 2020;9:e1901058. [PMID: 32196144 DOI: 10.1002/adhm.201901058] [Cited by in Crossref: 120] [Cited by in F6Publishing: 128] [Article Influence: 40.0] [Reference Citation Analysis]
45 Roscher M, Bakos G, Benešová M. Atomic Nanogenerators in Targeted Alpha Therapies: Curie's Legacy in Modern Cancer Management. Pharmaceuticals (Basel) 2020;13:E76. [PMID: 32340103 DOI: 10.3390/ph13040076] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
46 Dogra P, Butner JD, Nizzero S, Ruiz Ramírez J, Noureddine A, Peláez MJ, Elganainy D, Yang Z, Le AD, Goel S, Leong HS, Koay EJ, Brinker CJ, Cristini V, Wang Z. Image-guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1628. [PMID: 32314552 DOI: 10.1002/wnan.1628] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
47 Iglesias I, Huidobro JA, Alfonso BF, Trobajo C, Espina A, Mendoza R, García JR. Kinetic Analysis of the Thermal Decomposition of Iron(III) Phosphates: Fe(NH3)2PO4 and Fe(ND3)2PO4. Int J Mol Sci 2020;21:E781. [PMID: 31991758 DOI: 10.3390/ijms21030781] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
48 Silva F, Paulo A, Pallier A, Même S, Tóth É, Gano L, Marques F, Geraldes CFGC, Castro MMCA, Cardoso AM, Jurado AS, López-Larrubia P, Lacerda S, Campello MPC. Dual Imaging Gold Nanoplatforms for Targeted Radiotheranostics. Materials (Basel) 2020;13:E513. [PMID: 31978954 DOI: 10.3390/ma13030513] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
49 Gholami YH, Josephson L, Akam EA, Caravan P, Wilks MQ, Pan XZ, Maschmeyer R, Kolnick A, El Fakhri G, Normandin MD, Kuncic Z, Yuan H. A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes. Int J Nanomedicine 2020;15:31-47. [PMID: 32021163 DOI: 10.2147/IJN.S227931] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
50 González-ballesteros N, Rodríguez-argüelles MC. Seaweeds: A promising bionanofactory for ecofriendly synthesis of gold and silver nanoparticles. Sustainable Seaweed Technologies 2020. [DOI: 10.1016/b978-0-12-817943-7.00018-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
51 Pérez-Medina C, Teunissen AJP, Kluza E, Mulder WJM, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020;154-155:123-41. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
52 Li Q, Zeng J, Miao Q, Gao M. Self-Illuminating Agents for Deep-Tissue Optical Imaging. Front Bioeng Biotechnol 2019;7:326. [PMID: 31799247 DOI: 10.3389/fbioe.2019.00326] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
53 Zare Y, Rhee KY, Park S. Simple model for hydrolytic degradation of poly(lactic acid)/poly(ethylene oxide)/carbon nanotubes nanobiosensor in neutral phosphate‐buffered saline solution. J Biomed Mater Res 2019;107:2706-17. [DOI: 10.1002/jbm.a.36774] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
54 Sivasubramanian M, Chuang YC, Chen NT, Lo LW. Seeing Better and Going Deeper in Cancer Nanotheranostics. Int J Mol Sci 2019;20:E3490. [PMID: 31315232 DOI: 10.3390/ijms20143490] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
55 Jeon J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 2019;20:E2323. [PMID: 31083402 DOI: 10.3390/ijms20092323] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 11.3] [Reference Citation Analysis]