BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma J, Liu K, Yang X, Jin D, Li Y, Jiao G, Zhou J, Sun R. Recent Advances and Challenges in Photoreforming of Biomass-Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. ChemSusChem 2021;14:4903-22. [PMID: 34636483 DOI: 10.1002/cssc.202101173] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Shi C, Kang F, Zhu Y, Teng M, Shi J, Qi H, Huang Z, Si C, Jiang F, Hu J. Photoreforming lignocellulosic biomass for hydrogen production: Optimized design of photocatalyst and photocatalytic system. Chemical Engineering Journal 2023;452:138980. [DOI: 10.1016/j.cej.2022.138980] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Ma J, Zhang J, Jin D, Yao S, Sun R. LED white-light-driven photocatalysis for effective lignocellulose reforming to co-produce hydrogen and value-added chemicals via Zn2/O@IP-g-CN. Journal of Environmental Chemical Engineering 2022;10:108554. [DOI: 10.1016/j.jece.2022.108554] [Reference Citation Analysis]
3 Ma J, Li X, Li Y, Jiao G, Su H, Xiao D, Zhai S, Sun R. Single-atom zinc catalyst for co-production of hydrogen and fine chemicals in soluble biomass solution. Advanced Powder Materials 2022;1:100058. [DOI: 10.1016/j.apmate.2022.100058] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Qian H, Hou Q, Zhang W, Nie Y, Lai R, Ren H, Yu G, Bai X, Wang H, Ju M. Construction of electron transport channels and oxygen adsorption sites to modulate reactive oxygen species for photocatalytic selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Applied Catalysis B: Environmental 2022. [DOI: 10.1016/j.apcatb.2022.121907] [Reference Citation Analysis]
5 Liu K, Ma J, Yang X, Liu Z, Li X, Zhang J, Cui R, Sun R. Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chemical Engineering Journal 2022;437:135232. [DOI: 10.1016/j.cej.2022.135232] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
6 Ma J, Yang X, Yao S, Guo Y, Sun R. Photocatalytic Biorefinery to Lactic Acid: A Carbon Nitride Framework with O Atoms Replacing the Graphitic N Linkers Shows Fast Migration/Separation of Charge. ChemCatChem. [DOI: 10.1002/cctc.202200097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Chu S, Zhang B, Zhao X, Soo HS, Wang F, Xiao R, Zhang H. Photocatalytic Conversion of Plastic Waste: From Photodegradation to Photosynthesis. Advanced Energy Materials. [DOI: 10.1002/aenm.202200435] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
8 Li F, Ai H, Shen S, Geng J, Ho Lo K, Pan H. Two-Dimensional Dirac Nodal Line Carbon Nitride to Anchor Single-Atom Catalyst for Oxygen Reduction Reaction. ChemSusChem 2022;:e202102537. [PMID: 35132828 DOI: 10.1002/cssc.202102537] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yang X, Liu K, Ma J, Sun R. Carbon quantum dots anchored on 1,2,3,5-tetrakis(carbazole-9-yl)-4,6-dicyanobenzene for efficient selective photo splitting of biomass-derived sugars into lactic acid. Green Chem 2022;24:5894-903. [DOI: 10.1039/d2gc01465c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]