BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sharpe HR, Geer AM, Lewis W, Blake AJ, Kays DL. Iron(II)-Catalyzed Hydrophosphination of Isocyanates. Angew Chem Int Ed 2017;56:4845-8. [DOI: 10.1002/anie.201701051] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Noor A. Recent developments in two coordinate transition metal chemistry. Coordination Chemistry Reviews 2023;476:214941. [DOI: 10.1016/j.ccr.2022.214941] [Reference Citation Analysis]
2 Itazaki M, Okabayashi K, Matsutani T, Nochida T, Moriuchi T, Nakazawa H. Synthesis and Characterization of Phosphinecarboxamide and Phosphinecarbothioamide, and Their Complexation with Palladium(II) Complex. Molecules 2022;27:5564. [DOI: 10.3390/molecules27175564] [Reference Citation Analysis]
3 Lau S, Hood TM, Webster RL. Broken Promises? On the Continued Challenges Faced in Catalytic Hydrophosphination. ACS Catal . [DOI: 10.1021/acscatal.2c03144] [Reference Citation Analysis]
4 Weller R, Müller I, Werncke CG. Catalytic 1,3‐H Atom Shift of a Terminal Benzylic Alkyne by Iron and Alkali Metal Silylamides – Switching between Allene and Internal Alkyne. Euro J of Inorganic Chem. [DOI: 10.1002/ejic.202100955] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang B, Ma X, Yan B, Ni C, Yu H, Yang Z, Roesky HW. An efficient catalytic method for hydrophosphination of heterocumulenes with diethylzinc as precatalyst without a solvent. Dalton Trans 2021;50:15488-92. [PMID: 34723295 DOI: 10.1039/d1dt02706a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
6 Zhu X, Xu M, Sun J, Guo D, Zhang Y, Zhou S, Wang S. Hydroamination and Hydrophosphination of Isocyanates/Isothiocyanates under Catalyst‐Free Conditions. Eur J Org Chem 2021;2021:5213-8. [DOI: 10.1002/ejoc.202100932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Huke CD, Taylor LJ, Argent SP, Kays DL. Catalyst-free Hydrophosphinylation of Isocyanates and Isothiocyanates under Low-Added-Solvent Conditions. ACS Sustainable Chem Eng 2021;9:10704-9. [DOI: 10.1021/acssuschemeng.1c02907] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
8 Faria EN, Jupp AR, Goicoechea JM. Novel primary phosphinecarboxamides derived from diamines. Dalton Trans 2021;50:6991-6. [PMID: 33949541 DOI: 10.1039/d1dt01198g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Huke CD, Kays DL. Hydrofunctionalization reactions of heterocumulenes: Formation of C–X (X = B, N, O, P, S and Si) bonds by homogeneous metal catalysts. Advances in Organometallic Chemistry 2021. [DOI: 10.1016/bs.adomc.2021.01.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Navrátil M, Faria EN, Panahy G, Císařová I, Goicoechea JM, Štěpnička P. Novel ferrocenyl functionalised phosphinecarboxamides: synthesis, characterisation and coordination. Dalton Trans 2020;49:8645-51. [PMID: 32598432 DOI: 10.1039/d0dt01908a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Nolla‐saltiel R, Geer AM, Taylor LJ, Churchill O, Davies ES, Lewis W, Blake AJ, Kays DL. Hydrophosphination of Activated Alkenes by a Cobalt(I) Pincer Complex. Adv Synth Catal 2020;362:3148-57. [DOI: 10.1002/adsc.202000514] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Hu Q, Huang X, Wang Z, Li G, Han Z, Yang H, Liao P, Ren X, Zhang Q, Liu J, He C. Slower Removing Ligands of Metal Organic Frameworks Enables Higher Electrocatalytic Performance of Derived Nanomaterials. Small 2020;16:e2002210. [PMID: 32452633 DOI: 10.1002/smll.202002210] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
13 Itazaki M, Matsutani T, Nochida T, Moriuchi T, Nakazawa H. Convenient synthesis of phosphinecarboxamide and phosphinecarbothioamide by hydrophosphination of isocyanates and isothiocyanates. Chem Commun 2020;56:443-5. [DOI: 10.1039/c9cc08329d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
14 Horsley Downie TM, Hall JW, Collier Finn TP, Liptrot DJ, Lowe JP, Mahon MF, Mcmullin CL, Whittlesey MK. The first ring-expanded NHC–copper( i ) phosphides as catalysts in the highly selective hydrophosphination of isocyanates. Chem Commun 2020;56:13359-62. [DOI: 10.1039/d0cc05694d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
15 South AJ, Geer AM, Taylor LJ, Sharpe HR, Lewis W, Blake AJ, Kays DL. Iron(II)-Catalyzed Hydroamination of Isocyanates. Organometallics 2019;38:4115-20. [DOI: 10.1021/acs.organomet.9b00393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
16 Cao Y, Fu Y, Li D, Zhu C, Zhang B, Chen Y. Organophosphorus-based polymer covalently functionalized reduced graphene oxide: In-situ synthesis and nonvolatile memory effect. Carbon 2019;141:758-67. [DOI: 10.1016/j.carbon.2018.09.064] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
17 Taylor LJ, Kays DL. Low-coordinate first-row transition metal complexes in catalysis and small molecule activation. Dalton Trans 2019;48:12365-81. [DOI: 10.1039/c9dt02402f] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
18 Wang D, Chen Q, Leng X, Deng L. Reactions of Low-Coordinate Cobalt(0)–N-Heterocyclic Carbene Complexes with Primary Aryl Phosphines. Inorg Chem 2018;57:15600-9. [DOI: 10.1021/acs.inorgchem.8b02937] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
19 Williams JD, Kerr WJ, Leach SG, Lindsay DM. A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology. Angew Chem Int Ed Engl 2018;57:12126-30. [PMID: 30019806 DOI: 10.1002/anie.201807393] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
20 Williams JD, Kerr WJ, Leach SG, Lindsay DM. A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology. Angew Chem 2018;130:12302-6. [DOI: 10.1002/ange.201807393] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
21 Keweloh L, Aders N, Hepp A, Pleschka D, Würthwein EU, Uhl W. A P-H functionalized Al/P-based frustrated Lewis pair - hydrophosphination of nitriles, ring opening with cyclopropenones and evidence of P[double bond, length as m-dash]C double bond formation. Dalton Trans 2018;47:8402-17. [PMID: 29893387 DOI: 10.1039/c8dt01836g] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
22 Sharpe HR, Geer AM, Blundell TJ, Hastings FR, Fay MW, Rance GA, Lewis W, Blake AJ, Kays DL. Dehydrocoupling of dimethylamine–borane promoted by manganese( ii ) m -terphenyl complexes. Catal Sci Technol 2018;8:229-35. [DOI: 10.1039/c7cy02086d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
23 Zhang Y, Qu L, Wang Y, Yuan D, Yao Y, Shen Q. Neutral and Cationic Zirconium Complexes Bearing Multidentate Aminophenolato Ligands for Hydrophosphination Reactions of Alkenes and Heterocumulenes. Inorg Chem 2018;57:139-49. [DOI: 10.1021/acs.inorgchem.7b02248] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]