BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021;10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opinion on Drug Delivery 2022. [DOI: 10.1080/17425247.2023.2154075] [Reference Citation Analysis]
2 Cai Y, Ji X, Zhang Y, Liu C, Zhang Z, Lv Y, Dong X, He H, Qi J, Lu Y, Ouyang D, Zhao W, Wu W. Near‐infrared fluorophores with absolute aggregation‐caused quenching and negligible fluorescence re‐illumination for in vivo bioimaging of nanocarriers. Aggregate 2022. [DOI: 10.1002/agt2.277] [Reference Citation Analysis]
3 Matsuura H, Kawakami R, Isoe M, Hoshihara M, Minami Y, Yatsuzuka K, Tsuda T, Murakami M, Suzuki Y, Kawamata J, Imamura T, Hadano S, Watanabe S, Niko Y. NIR-II-Excitable Dye-Loaded Nanoemulsions for Two-Photon Microscopy Imaging of Capillary Blood Vessels in the Entire Hippocampal CA1 Region of Living Mice. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c03299] [Reference Citation Analysis]
4 Chen J, Stenspil SG, Kaziannis S, Kacenauskaite L, Lenngren N, Kloz M, Flood AH, Laursen BW. Quantitative Energy Transfer in Organic Nanoparticles Based on Small-Molecule Ionic Isolation Lattices for UV Light Harvesting. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01899] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Kaeokhamloed N, Legeay S, Roger E. FRET as the tool for in vivo nanomedicine tracking. J Control Release 2022;349:156-73. [PMID: 35779657 DOI: 10.1016/j.jconrel.2022.06.048] [Reference Citation Analysis]
6 Skotland T, Iversen TG, Llorente A, Sandvig K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Adv Drug Deliv Rev 2022;186:114326. [PMID: 35588953 DOI: 10.1016/j.addr.2022.114326] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 García-melero J, López-mitjavila J, García-celma MJ, Rodriguez-abreu C, Grijalvo S. Rosmarinic Acid-Loaded Polymeric Nanoparticles Prepared by Low-Energy Nano-Emulsion Templating: Formulation, Biophysical Characterization, and In Vitro Studies. Materials 2022;15:4572. [DOI: 10.3390/ma15134572] [Reference Citation Analysis]
8 Khalin I, Adarsh N, Schifferer M, Wehn A, Groschup B, Misgeld T, Klymchenko A, Plesnila N. Size-Selective Transfer of Lipid Nanoparticle-Based Drug Carriers Across the Blood Brain Barrier Via Vascular Occlusions Following Traumatic Brain Injury. Small 2022;:e2200302. [PMID: 35384294 DOI: 10.1002/smll.202200302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu F, Danylchuk DI, Andreiuk B, Klymchenko AS. Dynamic covalent chemistry in live cells for organelle targeting and enhanced photodynamic action. Chem Sci 2022;13:3652-60. [PMID: 35432899 DOI: 10.1039/d1sc04770a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yang Y, Hou X, Ma S, Huang S, Chen J, Fang Z, Nie G, Xu B, Serra CA, Ding S. Tetraphenylethylene-Based Nanogels by Physical Encapsulation Technology: An AIEgen Transparent Film Thermometers. ACS Appl Polym Mater 2022;4:1974-82. [DOI: 10.1021/acsapm.1c01826] [Reference Citation Analysis]
11 Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022;12:457. [DOI: 10.3390/nano12030457] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 38.0] [Reference Citation Analysis]
12 Schmitt S, Huppertsberg A, Klefenz A, Kaps L, Mailänder V, Schuppan D, Butt H, Nuhn L, Koynov K. Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules. [DOI: 10.1021/acs.biomac.1c01407] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Mater Adv . [DOI: 10.1039/d1ma00961c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
14 Melnychuk N, Ashokkumar P, Aparin IO, Klymchenko AS. Pre- and Postfunctionalization of Dye-Loaded Polymeric Nanoparticles for Preparation of FRET-Based Nanoprobes. ACS Appl Polym Mater 2022;4:44-53. [DOI: 10.1021/acsapm.1c00819] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Bouhoute M, Nakajima M, Isoda H. Design of nanoemulgel using Argania spinosa microfibrillated cellulose and natural emulsifiers foreseeing melanogenesis enhancement. Carbohydr Polym 2021;274:118632. [PMID: 34702455 DOI: 10.1016/j.carbpol.2021.118632] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Severi C, Lahtinen S, Rosenberg J, Reisch A, Soukka T, Klymchenko AS. Lanthanide‐based bulky counterions against aggregation‐caused quenching of dyes in fluorescent polymeric nanoparticles. Aggregate 2022;3. [DOI: 10.1002/agt2.130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Díez-Villares S, Pellico J, Gómez-Lado N, Grijalvo S, Alijas S, Eritja R, Herranz F, Aguiar P, de la Fuente M. Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. Int J Nanomedicine 2021;16:5923-35. [PMID: 34475757 DOI: 10.2147/IJN.S316767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, Song M. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci 2021;22:9118. [PMID: 34502028 DOI: 10.3390/ijms22179118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
19 Porubský M, Vychodilová K, Milićević D, Buděšinský M, Stanková J, Džubák P, Hajdúch M, Hlaváč J. Cytotoxicity of Amino-BODIPY Modulated via Conjugation with 2-Phenyl-3-Hydroxy-4(1H)-Quinolinones. ChemistryOpen 2021;10:1104-10. [PMID: 34427046 DOI: 10.1002/open.202100025] [Reference Citation Analysis]
20 Andreiuk B, Aparin IO, Reisch A, Klymchenko AS. Bulky Barbiturates as Non-Toxic Ionic Dye Insulators for Enhanced Emission in Polymeric Nanoparticles. Chemistry 2021;27:12877-83. [PMID: 34164869 DOI: 10.1002/chem.202101986] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Yang G, Liu Y, Zhao CX. Quantitative comparison of different fluorescent dye-loaded nanoparticles. Colloids Surf B Biointerfaces 2021;206:111923. [PMID: 34146992 DOI: 10.1016/j.colsurfb.2021.111923] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Visaveliya NR, Köhler JM. Softness Meets with Brightness: Dye‐Doped Multifunctional Fluorescent Polymer Particles via Microfluidics for Labeling. Advanced Optical Materials 2021;9:2002219. [DOI: 10.1002/adom.202002219] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Wang X, Bou S, Klymchenko AS, Anton N, Collot M. Ultrabright Green-Emitting Nanoemulsions Based on Natural Lipids-BODIPY Conjugates. Nanomaterials (Basel) 2021;11:826. [PMID: 33807096 DOI: 10.3390/nano11030826] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Liu F, Niko Y, Bouchaala R, Mercier L, Lefebvre O, Andreiuk B, Vandamme T, Goetz JG, Anton N, Klymchenko A. Drug‐Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angew Chem Int Ed 2021;60:6573-6580. [DOI: 10.1002/anie.202014259] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Li S, Gan Y, Lin C, Lin K, Hu P, Liu L, Yu S, Zhao S, Shi J. NIR-/pH-Responsive Nanocarriers Based on Mesoporous Hollow Polydopamine for Codelivery of Hydrophilic/Hydrophobic Drugs and Photothermal Synergetic Therapy. ACS Appl Bio Mater 2021;4:1605-15. [PMID: 35014509 DOI: 10.1021/acsabm.0c01451] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
26 Liu F, Niko Y, Bouchaala R, Mercier L, Lefebvre O, Andreiuk B, Vandamme T, Goetz JG, Anton N, Klymchenko A. Drug‐Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angew Chem 2021;133:6647-54. [DOI: 10.1002/ange.202014259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Cai Y, Tang C, Wei Z, Song C, Zou H, Zhang G, Ran J, Han W. Fused-Ring Small-Molecule-Based Bathochromic Nano-agents for Tumor NIR-II Fluorescence Imaging-Guided Photothermal/Photodynamic Therapy. ACS Appl Bio Mater 2021;4:1942-9. [DOI: 10.1021/acsabm.0c01576] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
28 Mochizuki C, Nakamura J, Nakamura M. Development of Non-Porous Silica Nanoparticles towards Cancer Photo-Theranostics. Biomedicines 2021;9:73. [PMID: 33451074 DOI: 10.3390/biomedicines9010073] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]