BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD. In Vitro Microfluidic Models for Neurodegenerative Disorders. Adv Healthc Mater 2018;7. [PMID: 28881425 DOI: 10.1002/adhm.201700489] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Peng B, Hao S, Tong Z, Bai H, Pan S, Lim KL, Li L, Voelcker NH, Huang W. Blood-brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. Lab Chip 2022. [PMID: 36004771 DOI: 10.1039/d2lc00305h] [Reference Citation Analysis]
2 Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Front Bioeng Biotechnol 2022;10:919646. [DOI: 10.3389/fbioe.2022.919646] [Reference Citation Analysis]
3 Pinto M, Silva V, Barreiro S, Silva R, Remião F, Borges F, Fernandes C. Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Res Rev 2022;79:101658. [PMID: 35660114 DOI: 10.1016/j.arr.2022.101658] [Reference Citation Analysis]
4 Suriyaprakash J, Gupta N, Shan L, Wu L. Immobilized Molecules’ Impact on the Efficacy of Nanocarbon Organic Sensors for Ultralow Dopamine Detection in Biofluids. Adv Materials Technologies. [DOI: 10.1002/admt.202200099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Li J, Liu Y, Li Y, Li X, Liang J, Qu S. Microfluidic volume optical monitoring system based on functional channels integrated by hollow cylindrical waveguide. Measurement 2022. [DOI: 10.1016/j.measurement.2022.110951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang H, Rong G, Bian S, Sawan M. Lab-on-Chip Microsystems for Ex Vivo Network of Neurons Studies: A Review. Front Bioeng Biotechnol 2022;10:841389. [DOI: 10.3389/fbioe.2022.841389] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hogberg HT, Smirnova L. The Future of 3D Brain Cultures in Developmental Neurotoxicity Testing. Front Toxicol 2022;4:808620. [DOI: 10.3389/ftox.2022.808620] [Reference Citation Analysis]
8 Arjmand B, Kokabi Hamidpour S, Rabbani Z, Tayanloo-beik A, Rahim F, Aghayan HR, Larijani B. Organ on a Chip: A Novel in vitro Biomimetic Strategy in Amyotrophic Lateral Sclerosis (ALS) Modeling. Front Neurol 2022;12:788462. [DOI: 10.3389/fneur.2021.788462] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
9 Chrysanthou M, Miro Estruch I, Rietjens IMCM, Wichers HJ, Hoppenbrouwers T. In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022;14:363. [PMID: 35057544 DOI: 10.3390/nu14020363] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, Mohebbi S, Seidi F, Ganjali MR, Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv Biol (Weinh) 2021;:e2000526. [PMID: 34837667 DOI: 10.1002/adbi.202000526] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Vit FF, Nunes R, Wu YT, Prado Soares MC, Godoi N, Fujiwara E, Carvalho HF, Gaziola de la Torre L. A modular, reversible sealing, and reusable microfluidic device for drug screening. Anal Chim Acta 2021;1185:339068. [PMID: 34711311 DOI: 10.1016/j.aca.2021.339068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Prasanna P, Rathee S, Rahul V, Mandal D, Chandra Goud MS, Yadav P, Hawthorne S, Sharma A, Gupta PK, Ojha S, Jha NK, Villa C, Jha SK. Microfluidic Platforms to Unravel Mysteries of Alzheimer's Disease: How Far Have We Come? Life (Basel) 2021;11:1022. [PMID: 34685393 DOI: 10.3390/life11101022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Maoz BM. Brain-on-a-Chip: Characterizing the next generation of advanced in vitro platforms for modeling the central nervous system. APL Bioeng 2021;5:030902. [PMID: 34368601 DOI: 10.1063/5.0055812] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
14 Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. Adv Sci (Weinh) 2021;8:2003937. [PMID: 34026447 DOI: 10.1002/advs.202003937] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 19.0] [Reference Citation Analysis]
15 Rothbauer M, Bachmann BEM, Eilenberger C, Kratz SRA, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. Micromachines (Basel) 2021;12:470. [PMID: 33919242 DOI: 10.3390/mi12050470] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
16 Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release 2021;332:460-92. [DOI: 10.1016/j.jconrel.2021.02.036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
17 Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020;143:3181-213. [PMID: 33020798 DOI: 10.1093/brain/awaa268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
18 Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. Small 2021;17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
19 Peng B, Tong Z, Tong WY, Pasic PJ, Oddo A, Dai Y, Luo M, Frescene J, Welch NG, Easton CD, Thissen H, Voelcker NH. In Situ Surface Modification of Microfluidic Blood-Brain-Barriers for Improved Screening of Small Molecules and Nanoparticles. ACS Appl Mater Interfaces 2020;12:56753-66. [PMID: 33226228 DOI: 10.1021/acsami.0c17102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
20 Pasteuning-Vuhman S, de Jongh R, Timmers A, Pasterkamp RJ. Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease. Trends Mol Med 2021;27:263-79. [PMID: 33121873 DOI: 10.1016/j.molmed.2020.09.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
21 Li H, Cheng F, Li W, Cao X, Wang Z, Wang M, Robledo-Lara JA, Liao J, Chávez-Madero C, Hassan S, Xie J, Trujillo-de Santiago G, Álvarez MM, He J, Zhang YS. Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue models in vitro. Biofabrication 2020;12:045027. [PMID: 32945271 DOI: 10.1088/1758-5090/abb11e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
22 Simpson LW, Szeto GL, Boukari H, Good TA, Leach JB. Collagen hydrogel confinement of Amyloid-β (Aβ) accelerates aggregation and reduces cytotoxic effects. Acta Biomater 2020;112:164-73. [PMID: 32464268 DOI: 10.1016/j.actbio.2020.05.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
23 Jamerlan A, An SSA, Hulme J. Advances in amyloid beta oligomer detection applications in Alzheimer's disease. TrAC Trends in Analytical Chemistry 2020;129:115919. [DOI: 10.1016/j.trac.2020.115919] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
24 Teixeira MI, Amaral MH, Costa PC, Lopes CM, Lamprou DA. Recent Developments in Microfluidic Technologies for Central Nervous System Targeted Studies. Pharmaceutics 2020;12:E542. [PMID: 32545276 DOI: 10.3390/pharmaceutics12060542] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
25 Zhang H, Whalley RD, Ferreira AM, Dalgarno K. High throughput physiological micro-models for in vitro pre-clinical drug testing: a review of engineering systems approaches. Prog Biomed Eng 2020;2:022001. [DOI: 10.1088/2516-1091/ab7cc4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
26 Del Favero G, Kraegeloh A. Integrating Biophysics in Toxicology. Cells 2020;9:E1282. [PMID: 32455794 DOI: 10.3390/cells9051282] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Mijanović O, Branković A, Borovjagin A, Butnaru DV, Bezrukov EA, Sukhanov RB, Shpichka A, Timashev P, Ulasov I. Battling Neurodegenerative Diseases with Adeno-Associated Virus-Based Approaches. Viruses 2020;12:E460. [PMID: 32325732 DOI: 10.3390/v12040460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Lee SWL, Campisi M, Osaki T, Possenti L, Mattu C, Adriani G, Kamm RD, Chiono V. Modeling Nanocarrier Transport across a 3D In Vitro Human Blood-Brain-Barrier Microvasculature. Adv Healthc Mater 2020;9:e1901486. [PMID: 32125776 DOI: 10.1002/adhm.201901486] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
29 Offeddu GS, Shin Y, Kamm RD. Microphysiological models of neurological disorders for drug development. Current Opinion in Biomedical Engineering 2020;13:119-26. [DOI: 10.1016/j.cobme.2019.12.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
30 Sala-Jarque J, Mesquida-Veny F, Badiola-Mateos M, Samitier J, Hervera A, Del Río JA. Neuromuscular Activity Induces Paracrine Signaling and Triggers Axonal Regrowth after Injury in Microfluidic Lab-On-Chip Devices. Cells 2020;9:E302. [PMID: 32012727 DOI: 10.3390/cells9020302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
31 Mo SJ, Lee J, Kye HG, Lee JM, Kim E, Geum D, Sun W, Chung BG. A microfluidic gradient device for drug screening with human iPSC-derived motoneurons. Analyst 2020;145:3081-9. [DOI: 10.1039/c9an02384d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
32 Choi JH, Santhosh M, Choi JW. In Vitro Blood-Brain Barrier-Integrated Neurological Disorder Models Using a Microfluidic Device. Micromachines (Basel) 2019;11:E21. [PMID: 31878184 DOI: 10.3390/mi11010021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
33 Pu Z, Ma J, Li W, Lai X, Su X, Yu H, Li D. A flexible precise volume sensor based on metal-on-polyimide electrodes sandwiched by PDMS channel for microfluidic systems. Microfluid Nanofluid 2019;23. [DOI: 10.1007/s10404-019-2300-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
34 Antill-O'Brien N, Bourke J, O'Connell CD. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models. Materials (Basel) 2019;12:E3218. [PMID: 31581436 DOI: 10.3390/ma12193218] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
35 Hesari Z, Mottaghitalab F, Shafiee A, Soleymani M, Dinarvand R, Atyabi F. Application of microfluidic systems for neural differentiation of cells. PRNANO 2019;2:370-81. [DOI: 10.33218/prnano2(4).181127.2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Jia L, Han F, Yang H, Turnbull G, Wang J, Clarke J, Shu W, Guo M, Li B. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications. Adv Healthc Mater 2019;8:e1900435. [PMID: 31081247 DOI: 10.1002/adhm.201900435] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
37 Williams MJ, Lee NK, Mylott JA, Mazzola N, Ahmed A, Abhyankar VV. A Low-Cost, Rapidly Integrated Debubbler (RID) Module for Microfluidic Cell Culture Applications. Micromachines (Basel) 2019;10:E360. [PMID: 31151206 DOI: 10.3390/mi10060360] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
38 Oddo A, Peng B, Tong Z, Wei Y, Tong WY, Thissen H, Voelcker NH. Advances in Microfluidic Blood-Brain Barrier (BBB) Models. Trends Biotechnol 2019;37:1295-314. [PMID: 31130308 DOI: 10.1016/j.tibtech.2019.04.006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 74] [Article Influence: 17.3] [Reference Citation Analysis]
39 Davis BN, Yen R, Prasad V, Truskey GA. Oxygen consumption in human, tissue-engineered myobundles during basal and electrical stimulation conditions. APL Bioeng 2019;3:026103. [PMID: 31149650 DOI: 10.1063/1.5093417] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
40 Singh T, Vazquez M. Time-Dependent Addition of Neuronal and Schwann Cells Increase Myotube Viability and Length in an In Vitro Tri-culture Model of the Neuromuscular Junction. Regen Eng Transl Med 2019;5:402-13. [DOI: 10.1007/s40883-019-00095-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
41 Liu Q, Li H, Lam KY. Modeling of a fast-response magnetic-sensitive hydrogel for dynamic control of microfluidic flow. Phys Chem Chem Phys 2019;21:1852-62. [PMID: 30629060 DOI: 10.1039/c8cp06556j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
42 Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo DC, Zheng W. Induced pluripotent stem cells for neural drug discovery. Drug Discov Today 2019;24:992-9. [PMID: 30664937 DOI: 10.1016/j.drudis.2019.01.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
43 Stefen H, Hassanzadeh-Barforoushi A, Brettle M, Fok S, Suchowerska AK, Tedla N, Barber T, Warkiani ME, Fath T. A Novel Microfluidic Device-Based Neurite Outgrowth Inhibition Assay Reveals the Neurite Outgrowth-Promoting Activity of Tropomyosin Tpm3.1 in Hippocampal Neurons. Cell Mol Neurobiol 2018;38:1557-63. [PMID: 30218404 DOI: 10.1007/s10571-018-0620-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
44 Yesil-celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. Adv Biosys 2018;2:1800109. [DOI: 10.1002/adbi.201800109] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
45 Saliba J, Daou A, Damiati S, Saliba J, El-Sabban M, Mhanna R. Development of Microplatforms to Mimic the In Vivo Architecture of CNS and PNS Physiology and Their Diseases. Genes (Basel) 2018;9:E285. [PMID: 29882823 DOI: 10.3390/genes9060285] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
46 Hajal C, Campisi M, Mattu C, Chiono V, Kamm RD. In vitro models of molecular and nano-particle transport across the blood-brain barrier. Biomicrofluidics 2018;12:042213. [PMID: 29887937 DOI: 10.1063/1.5027118] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]