Copyright
©The Author(s) 2025.
World J Methodol. Sep 20, 2025; 15(3): 101837
Published online Sep 20, 2025. doi: 10.5662/wjm.v15.i3.101837
Published online Sep 20, 2025. doi: 10.5662/wjm.v15.i3.101837
Figure 1 The study flow-chart.
LASSO: Least Absolute Shrinkage and Selection Operator; DSS: Dengue shock syndrome; AUC: Area under the curve; AIC: Akaike information criterion; SMOTE: Synthetic minority oversampling technique; KNN: K-nearest neighbors.
Figure 2 Features of importance from the Random Forest model.
Figure 3 The SHAP analysis shows the impact of predefined variables on the model’s prediction of mortality in patients with dengue shock syndrome.
- Citation: Vo LT, Vu T, Pham TN, Trinh TH, Nguyen TT. Machine learning-based models for prediction of in-hospital mortality in patients with dengue shock syndrome. World J Methodol 2025; 15(3): 101837
- URL: https://www.wjgnet.com/2222-0682/full/v15/i3/101837.htm
- DOI: https://dx.doi.org/10.5662/wjm.v15.i3.101837