BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021;38:101119. [PMID: 34267794 DOI: 10.1016/j.nantod.2021.101119] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 64.0] [Reference Citation Analysis]
Number Citing Articles
1 Jain A, Alex TS, Lang DK, Gupta S. Stimuli-responsive protein fibers for advanced applications. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00013-1] [Reference Citation Analysis]
2 Hassanpour M, Shahavi MH, Heidari G, Kumar A, Nodehi M, Moghaddam FD, Mohammadi M, Nikfarjam N, Sharifi E, Makvandi P, Male HK, Zare EN. Ionic liquid-mediated synthesis of metal nanostructures: Potential application in cancer diagnosis and therapy. Journal of Ionic Liquids 2022;2:100033. [DOI: 10.1016/j.jil.2022.100033] [Reference Citation Analysis]
3 He P, Yang G, Zhu D, Kong H, Corrales-ureña YR, Colombi Ciacchi L, Wei G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J Nanobiotechnol 2022;20:483. [DOI: 10.1186/s12951-022-01691-4] [Reference Citation Analysis]
4 Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnol 2022;20:484. [DOI: 10.1186/s12951-022-01692-3] [Reference Citation Analysis]
5 Ansarinik Z, Kiyani H, Yoosefian M. Investigation of self-assembled poly(ethylene glycol)-poly(L-lactic acid) micelle as potential drug delivery system for poorly water soluble anticancer drug abemaciclib. Journal of Molecular Liquids 2022;365:120192. [DOI: 10.1016/j.molliq.2022.120192] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Mohajer F, Ziarani GM, Badiei A, Iravani S, Varma RS. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. Micromachines 2022;13:1773. [DOI: 10.3390/mi13101773] [Reference Citation Analysis]
7 Ardestani M, Khorsandi Z, Keshavarzipour F, Iravani S, Sadeghi-aliabadi H, Varma RS. Heterocyclic Compounds as Hsp90 Inhibitors: A Perspective on Anticancer Applications. Pharmaceutics 2022;14:2220. [DOI: 10.3390/pharmaceutics14102220] [Reference Citation Analysis]
8 Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Singh P, Goel VK, Kumar R, Kumar V. Functionalized Peptide-Based Nanoparticles for Targeted Cancer Nanotherapeutics: A State-of-the-Art Review. ACS Omega. [DOI: 10.1021/acsomega.2c03974] [Reference Citation Analysis]
9 Xue C, Zhang H, Wang X, Du H, Lu L, Fei Y, Li Y, Zhang Y, Li M, Luo Z. Bio-inspired engineered ferritin-albumin nanocomplexes for targeted ferroptosis therapy. J Control Release 2022:S0168-3659(22)00646-0. [PMID: 36181916 DOI: 10.1016/j.jconrel.2022.09.051] [Reference Citation Analysis]
10 Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022;155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Sun B, Guo X, Feng M, Cao S, Yang H, Wu H, van Stevendaal MHME, Oerlemans RAJF, Liang J, Ouyang Y, van Hest JCM. Responsive Peptide Nanofibers with Theranostic and Prognostic Capacity. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202208732] [Reference Citation Analysis]
12 Sheng J, Pi Y, Zhao S, Wang B, Chen M, Chang K. Novel DNA nanoflower biosensing technologies towards next-generation molecular diagnostics. Trends Biotechnol 2022:S0167-7799(22)00229-3. [PMID: 36117022 DOI: 10.1016/j.tibtech.2022.08.011] [Reference Citation Analysis]
13 Ashrafizadeh M, Hushmandi K, Mirzaei S, Bokaie S, Bigham A, Makvandi P, Rabiee N, Thakur VK, Kumar AP, Sharifi E, Varma RS, Aref AR, Wojnilowicz M, Zarrabi A, Karimi‐maleh H, Voelcker NH, Mostafavi E, Orive G. Chitosan‐based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10325] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Jia Y, Yan X, Li J. Schiff Base Mediated Dipeptide Assembly toward Nanoarchitectonics. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202207752] [Reference Citation Analysis]
15 Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines 2022;10:1493. [DOI: 10.3390/vaccines10091493] [Reference Citation Analysis]
16 Ghasemii K, Darroudi M, Rahimmanesh I, Ghomi M, Hassanpour M, Sharifi E, Yousefiasl S, Ahmadi S, Zarrabi A, Borzacchiello A, Rabiee M, Paiva-santos AC, Rabiee N. Advances in aptamer-based drug delivery vehicles for cancer therapy. Biomaterials Advances 2022;140:213077. [DOI: 10.1016/j.bioadv.2022.213077] [Reference Citation Analysis]
17 Wang H, Zhao Z, Wu C, Tong X, Shi Y, Chen S. . IJN 2022;Volume 17:3841-51. [DOI: 10.2147/ijn.s371183] [Reference Citation Analysis]
18 Mohammadi K, Sani MA, Azizi-lalabadi M, Mcclements DJ. Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Advances in Colloid and Interface Science 2022;307:102734. [DOI: 10.1016/j.cis.2022.102734] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
19 Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022;13:979469. [DOI: 10.3389/fimmu.2022.979469] [Reference Citation Analysis]
20 Li X, Liu J, Chen H, Chen Y, Wang Y, Zhang CY, Xing X. Multi-functional engineered polypeptide-based drug delivery systems for improved cancer therapy. Green Chemical Engineering 2022. [DOI: 10.1016/j.gce.2022.07.010] [Reference Citation Analysis]
21 Wang J, Yang P, Hou D, Yan Y, Yue K, Zhong W, Xiao T, Wu X, Wang Z, Wu P, Wang L, Wang H, Xu W. Bacteria-inspired transformable nanoparticle targets and covers residual tumor against bladder cancer recurrence. Nano Today 2022;45:101551. [DOI: 10.1016/j.nantod.2022.101551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Chakrabartty I, Hakeem KR, Mohanta YK, Varma RS. Greener nanomaterials and their diverse applications in the energy sector. Clean Techn Environ Policy. [DOI: 10.1007/s10098-022-02368-0] [Reference Citation Analysis]
23 Xu J, Cao W, Wang P, Liu H. Tumor-Derived Membrane Vesicles: A Promising Tool for Personalized Immunotherapy. Pharmaceuticals (Basel) 2022;15:876. [PMID: 35890175 DOI: 10.3390/ph15070876] [Reference Citation Analysis]
24 Zeng Y, Qu X, Nie B, Mu Z, Li C, Li G. An electrochemical biosensor based on electroactive peptide nanoprobes for the sensitive analysis of tumor cells. Biosens Bioelectron 2022;215:114564. [PMID: 35853325 DOI: 10.1016/j.bios.2022.114564] [Reference Citation Analysis]
25 Han Y, Lafleur RPM, Zhou J, Xu W, Lin Z, Richardson JJ, Caruso F. Role of Molecular Interactions in Supramolecular Polypeptide-Polyphenol Networks for Engineering Functional Materials. J Am Chem Soc 2022. [PMID: 35775928 DOI: 10.1021/jacs.2c05052] [Reference Citation Analysis]
26 Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. J Exp Clin Cancer Res 2022;41:214. [PMID: 35773731 DOI: 10.1186/s13046-022-02406-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
27 Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022;10:897010. [DOI: 10.3389/fbioe.2022.897010] [Reference Citation Analysis]
28 Lopes J, Lopes D, Pereira-Silva M, Peixoto D, Veiga F, Hamblin MR, Conde J, Corbo C, Zare EN, Ashrafizadeh M, Tay FR, Chen C, Donnelly RF, Wang X, Makvandi P, Paiva-Santos AC. Macrophage Cell Membrane-Cloaked Nanoplatforms for Biomedical Applications. Small Methods 2022;:e2200289. [PMID: 35768282 DOI: 10.1002/smtd.202200289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 V D, P J S, Rajeev N, S AL, Chandran A, G B G, Sadanandan S. Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review. Mol Pharm 2022. [PMID: 35730605 DOI: 10.1021/acs.molpharmaceut.1c00983] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Jing M, Cai Y, Shi J, Zhang X, Zhu B, Yuan F, Zhang J, Xiao M, Chen M. Adjuvant Treatments of Adult Melanoma: A Systematic Review and Network Meta-Analysis. Front Oncol 2022;12:926242. [DOI: 10.3389/fonc.2022.926242] [Reference Citation Analysis]
31 Barbaro D, Di Bari L, Gandin V, Marzano C, Ciaramella A, Malventi M, Evangelisti C. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapor synthesis can target GLUT1 overexpressing tumors: In vitro tests and in vivo preliminary assessment. PLoS ONE 2022;17:e0269603. [DOI: 10.1371/journal.pone.0269603] [Reference Citation Analysis]
32 Li Q, Tan Q, Ma Y, Gu Z, Chen S. Myricetin Suppresses Ovarian Cancer In Vitro by Activating the p38/Sapla Signaling Pathway and Suppressing Intracellular Oxidative Stress. Front Oncol 2022;12:903394. [PMID: 35646711 DOI: 10.3389/fonc.2022.903394] [Reference Citation Analysis]
33 Oroojalian F, Karimzadeh S, Javanbakht S, Hejazi M, Baradaran B, Webster TJ, Mokhtarzadeh A, Varma RS, Kesharwani P, Sahebkar A. Current trends in stimuli-responsive nanotheranostics based on metal–organic frameworks for cancer therapy. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.05.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Aydin E, Aydin A, Çetiner G, Akbaba H, Erel Akbaba G. DOĞADAN İLHAM BİYOMİMETİK NANOTAŞIYICI SİSTEMLER. Ankara Universitesi Eczacilik Fakultesi Dergisi 2022. [DOI: 10.33483/jfpau.1033286] [Reference Citation Analysis]
35 Xu X, Li T, Jin K. Bioinspired and Biomimetic Nanomedicines for Targeted Cancer Therapy. Pharmaceutics 2022;14:1109. [PMID: 35631695 DOI: 10.3390/pharmaceutics14051109] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Rezaei T, Rezaei M, Karimifard S, Mahmoudi Beram F, Dakkali MS, Heydari M, Afshari-Behbahanizadeh S, Mostafavi E, Bokov DO, Ansari MJ, Farasati Far B, Akbarzadeh I, Chaiyasut C. Folic Acid-Decorated pH-Responsive Nanoniosomes With Enhanced Endocytosis for Breast Cancer Therapy: In Vitro Studies. Front Pharmacol 2022;13:851242. [PMID: 35517801 DOI: 10.3389/fphar.2022.851242] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
37 Yang J, Zheng R, Mamuti M, Hou D, Zhao Y, An H, Wang H, Zhao Y. Oncolytic peptide nanomachine circumvents chemo resistance of renal cell carcinoma. Biomaterials 2022;284:121488. [DOI: 10.1016/j.biomaterials.2022.121488] [Reference Citation Analysis]
38 Fu L, Zhang J, Wu C, Wang W, Wang D, Hu Z, Wang Z. A novel PD-L1 targeting peptide self-assembled nanofibers for sensitive tumor imaging and photothermal immunotherapy in vivo. Nano Res . [DOI: 10.1007/s12274-022-4331-5] [Reference Citation Analysis]
39 Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, Hashemi F, Tajik F, Hashemi M, Kumar AP, Aref AR, Zarrabi A, Khan H, Hamblin MR, Nuri Ertas Y, Samarghandian S. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022;237:2309-44. [PMID: 35437787 DOI: 10.1002/jcp.30751] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
40 Wang J, Chen G, Liu N, Han X, Zhao F, Zhang L, Chen P. Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Adv Colloid Interface Sci 2022;302:102638. [PMID: 35299136 DOI: 10.1016/j.cis.2022.102638] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022;41:105. [PMID: 35317831 DOI: 10.1186/s13046-022-02293-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
42 Jahangiri-manesh A, Mousazadeh M, Taji S, Bahmani A, Zarepour A, Zarrabi A, Sharifi E, Azimzadeh M. Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements. Pharmaceutics 2022;14:664. [DOI: 10.3390/pharmaceutics14030664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
43 Liu J, Li Y, Zhang H, Liu S, Yang M, Cui M, Zhang T, Yu Y, Xiao H, Du Z. Fabrication, characterization and functional attributes of zein-egg white derived peptides (EWDP)-chitosan ternary nanoparticles for encapsulation of curcumin: Role of EWDP. Food Chem 2022;372:131266. [PMID: 34628117 DOI: 10.1016/j.foodchem.2021.131266] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
44 Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022;15:18. [PMID: 35236381 DOI: 10.1186/s13045-022-01235-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
45 Paskeh MDA, Entezari M, Clark C, Zabolian A, Ranjbar E, Farahani MV, Saleki H, Sharifzadeh SO, Far FB, Ashrafizadeh M, Samarghandian S, Khan H, Ghavami S, Zarrabi A, Łos MJ. Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2022;1868:166326. [DOI: 10.1016/j.bbadis.2021.166326] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
46 Mubeen B, Rasool MG, Ullah I, Rasool R, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Phytochemicals Mediated Synthesis of AuNPs from Citrullus colocynthis and Their Characterization. Molecules 2022;27:1300. [PMID: 35209086 DOI: 10.3390/molecules27041300] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
48 Moammeri A, Abbaspour K, Zafarian A, Jamshidifar E, Motasadizadeh H, Dabbagh Moghaddam F, Salehi Z, Makvandi P, Dinarvand R. pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Tumorigenesis Breast Cancer. ACS Appl Bio Mater 2022. [PMID: 35129960 DOI: 10.1021/acsabm.1c01107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
49 Bu ZQ, Yao QF, Liu QY, Quan MX, Lu JY, Huang WT. Peptide-Based Sensing, Logic Computing, and Information Security on the Antimonene Platform. ACS Appl Mater Interfaces 2022. [PMID: 35112857 DOI: 10.1021/acsami.1c23814] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
50 Shi L, Kuang D, Ma X, Jalalah M, Alsareii SA, Gao T, Harraz FA, Yang J, Li G. Peptide Assembled in a Nano-confined Space as a Molecular Rectifier for the Availability of Ionic Current Modulation. Nano Lett 2022. [PMID: 35049303 DOI: 10.1021/acs.nanolett.1c04154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Akbarzadeh I, Farid M, Javidfar M, Zabet N, Shokoohian B, Arki MK, Shpichka A, Noorbazargan H, Aghdaei HA, Hossein-Khannazer N, Timashev P, Makvandi P, Vosough M. The Optimized Formulation of Tamoxifen-Loaded Niosomes Efficiently Induced Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. AAPS PharmSciTech 2022;23:57. [PMID: 35048234 DOI: 10.1208/s12249-022-02212-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
52 Yazdani H, Shahbazi MA, Varma RS. 2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences. ACS Appl Bio Mater 2022;5:40-58. [PMID: 35014828 DOI: 10.1021/acsabm.1c01015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
53 Sharifi E, Bigham A, Yousefiasl S, Trovato M, Ghomi M, Esmaeili Y, Samadi P, Zarrabi A, Ashrafizadeh M, Sharifi S, Sartorius R, Dabbagh Moghaddam F, Maleki A, Song H, Agarwal T, Maiti TK, Nikfarjam N, Burvill C, Mattoli V, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L, Makvandi P. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. Adv Sci (Weinh) 2022;9:e2102678. [PMID: 34796680 DOI: 10.1002/advs.202102678] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 30.0] [Reference Citation Analysis]
54 Ye Z, Liang L, Lu H, Shen Y, Zhou W, Li Y. Nanotechnology-Employed Bacteria-Based Delivery Strategy for Enhanced Anticancer Therapy. Int J Nanomedicine 2021;16:8069-86. [PMID: 34934313 DOI: 10.2147/IJN.S329855] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
55 Mojarad-Jabali S, Farshbaf M, Hemmati S, Sarfraz M, Motasadizadeh H, Shahbazi Mojarrad J, Atyabi F, Zakeri-Milani P, Valizadeh H. Comparison of three synthetic transferrin mimetic small peptides to promote the blood-brain barrier penetration of vincristine liposomes for improved glioma targeted therapy. Int J Pharm 2021;613:121395. [PMID: 34933080 DOI: 10.1016/j.ijpharm.2021.121395] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
56 Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Zabolian A, Hashemi M, Hushmandi K, Ashrafizadeh M, Aref AR, Samarghandian S. Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies. Biomed Pharmacother 2021;144:112335. [PMID: 34700233 DOI: 10.1016/j.biopha.2021.112335] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
58 Ashrafizadeh M, Zarrabi A, Mirzaei S, Hashemi F, Samarghandian S, Zabolian A, Hushmandi K, Ang HL, Sethi G, Kumar AP, Ahn KS, Nabavi N, Khan H, Makvandi P, Varma RS. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol 2021;157:112576. [PMID: 34571052 DOI: 10.1016/j.fct.2021.112576] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
59 He X, Yang L, Su H, Lin S, Qi D, Chen H, Qu Y, Liu L, Feng X. Clickable amino acid derivative tuned self-assembly of antigen and adjuvant for cancer immunotherapy. J Control Release 2021;337:306-16. [PMID: 34311025 DOI: 10.1016/j.jconrel.2021.07.033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021;171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Cited by in Crossref: 26] [Cited by in F6Publishing: 34] [Article Influence: 26.0] [Reference Citation Analysis]
61 Mani S, Swargiary G, Tyagi S, Singh M, Jha NK, Singh KK. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci 2021;281:119773. [PMID: 34192595 DOI: 10.1016/j.lfs.2021.119773] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]