Review
Copyright ©2014 Baishideng Publishing Group Co.
World J Transl Med. Apr 12, 2014; 3(1): 17-30
Published online Apr 12, 2014. doi: 10.5528/wjtm.v3.i1.17
Figure 1
Figure 1 The charged nucleus (for example, 1H) rotating with angular frequency ω = 2πv creates a magnetic field B and is equivalent to a small bar magnet whose axis is coincident with the spin rotation axis[4].
Figure 2
Figure 2 A 90-degree flip of the net magnetization.
Math 1
Math 1 Math(A1).
Math 2
Math 2 Math(A1).
Math 3
Math 3 Math(A1).
Math 4
Math 4 Math(A1).
Math 5
Math 5 Math(A1).
Math 6
Math 6 Math(A1).
Math 7
Math 7 Math(A1).
Math 8
Math 8 Math(A1).
Math 9
Math 9 Math(A1).
Math 10
Math 10 Math(A1).
Math 11
Math 11 Math(A1).
Math 12
Math 12 Math(A1).
Math 13
Math 13 Math(A1).
Math 14
Math 14 Math(A1).
Math 15
Math 15 Math(A1).
Math 16
Math 16 Math(A1).
Math 17
Math 17 Math(A1).
Math 18
Math 18 Math(A1).
Figure 3
Figure 3 A series of spectra recorded with different values of τ to map out the recovery of the magnetization.
Math 19
Math 19 Math(A1).
Math 20
Math 20 Math(A1).
Math 21
Math 21 Math(A1).
Math 22
Math 22 Math(A1).
Figure 4
Figure 4 Image from the transverse magnetization as it varies with time, t = 3 ns, and the relaxation parameters τl = 5. 1 ns, l = 3.734375 for (A) m = 0; (B) m = 1; (C) m = 2; (D) m = 3.
Figure 5
Figure 5 Image from the transverse magnetization as it varies with time, t = 3 ns, and the relaxation parameters τl = 6. 3 ns, l = 5.084034 for (A) m = 0; (B) m = 1; (C) m = 2; (D) m = 3.
Figure 6
Figure 6 Image from the transverse magnetization as it varies with time, t = 3 ns, and the relaxation parameters τl = 7. 1 ns, l = 6.057692 for (A) m = 0; (B) m = 1; (C) m = 2; (D) m = 3.
Figure 7
Figure 7 Image from the transverse magnetization as it varies with m = 3, and the relaxation parameters τl = 7. 1 ns, l = 6.057692 for (A) t = 5 ns; (B) t = 10 ns; (C) t = 50 ns; (D) t = 150 ns.
Math 23
Math 23 Math(A1).
Math 24
Math 24 Math(A1).
Math 25
Math 25 Math(A1).
Figure 8
Figure 8 Density maps of M0 using Equation (8) for l = 2 and (A) m = 0, 0 ≤ R ≤ 21/2; (B) m = 1, 0 ≤ R ≤ 21/2; (C) m = 2, 0 ≤ R ≤ 21/2; (D) m = 0, 0 ≤ R ≤ 81/2; (E) m = 1, 0 ≤ R ≤ 81/2; (F) m = 2, 0 ≤ R ≤ 81/2; (G) m = 0, 0 ≤ R ≤ 321/2; (H) m = 1, 0 ≤ R ≤ 321/2; (I) m = 2, 0 ≤ R ≤ 321/2.