BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Michalak M, Wouters K, Fransen E, Hellemans R, Van Craenenbroeck AH, Couttenye MM, Bracke B, Ysebaert DK, Hartman V, De Greef K, Chapelle T, Roeyen G, Van Beeumen G, Emonds MP, Abramowicz D, Bosmans JL. Prediction of delayed graft function using different scoring algorithms: A single-center experience. World J Transplant 2017; 7(5): 260-268 [PMID: 29104860 DOI: 10.5500/wjt.v7.i5.260]
URL: https://www.wjgnet.com/2220-3230/full/v7/i5/260.htm
Number Citing Articles
1
Kuang-Yu Jen, Samer Albahra, Felicia Yen, Junichiro Sageshima, Ling-Xin Chen, Nam Tran, Hooman H. Rashidi. Automated En Masse Machine Learning Model Generation Shows Comparable Performance as Classic Regression Models for Predicting Delayed Graft Function in Renal AllograftsTransplantation 2021; 105(12): 2646 doi: 10.1097/TP.0000000000003640
2
Giuseppe Ietto, Luca Guzzetti, Cristiano Salvino Baglieri, Veronica Raveglia, Elia Zani, Fabio Benedetti, Cristiano Parise, Valentina Iori, Caterina Franchi, Federica Masci, Andrea Vigezzi, Enrico Ferri, Domenico Iovino, Linda Liepa, Davide Brusa, Mauro Oltolina, Mattia Gritti, Marta Ripamonti, Daniela Dalla Gasperina, Andrea Ambrosini, Francesco Amico, Salomone Di Saverio, Gabriele Soldini, Lorenzo Latham, Matteo Tozzi, Giulio Carcano. Predictive Models for the Functional Recovery of Transplanted KidneyTransplantation Proceedings 2021; 53(10): 2873 doi: 10.1016/j.transproceed.2021.08.053
3
Raquel M. Quinino, Fabiana Agena, Luis Gustavo Modelli de Andrade, Mariane Furtado, Alexandre D.P. Chiavegatto Filho, Elias David-Neto. A Machine Learning Prediction Model for Immediate Graft Function After Deceased Donor Kidney TransplantationTransplantation 2023; 107(6): 1380 doi: 10.1097/TP.0000000000004510
4
Laura Jahn, Christiane R..ster, Mandy Schlosser, Yvonne Winkler, Susan Foller, Marc-Oliver Grimm, Gunter Wolf, Martin Busch. Rate, Factors, and Outcome of Delayed Graft Function After Kidney Transplantation of Deceased DonorsTransplantation Proceedings 2021; 53(5): 1454 doi: 10.1016/j.transproceed.2021.01.006
5
Arthur J. Matas, Erika Helgeson, Ann Fieberg, Robert Leduc, Robert S. Gaston, Bertram L. Kasiske, David Rush, Lawrence Hunsicker, Fernando Cosio, Joseph P. Grande, J. Michael Cecka, John Connett, Roslyn B. Mannon. Risk Prediction for Delayed Allograft Function: Analysis of the Deterioration of Kidney Allograft Function (DeKAF) Study DataTransplantation 2022; 106(2): 358 doi: 10.1097/TP.0000000000003718
6
Jesper Kers, Hessel Peters-Sengers, Martin B A Heemskerk, Stefan P Berger, Michiel G H Betjes, Arjan D van Zuilen, Luuk B Hilbrands, Johan W de Fijter, Azam S Nurmohamed, Maarten H Christiaans, Jaap J Homan van der Heide, Thomas P A Debray, Fréderike J Bemelman. Prediction models for delayed graft function: external validation on The Dutch Prospective Renal Transplantation RegistryNephrology Dialysis Transplantation 2018; 33(7): 1259 doi: 10.1093/ndt/gfy019
7
Evaldo Favi, Ajith James, Carmelo Puliatti, Phil Whatling, Mariano Ferraresso, Chiara Rui, Roberto Cacciola. Utility and safety of early allograft biopsy in adult deceased donor kidney transplant recipientsClinical and Experimental Nephrology 2020; 24(4): 356 doi: 10.1007/s10157-019-01821-7