Copyright
©The Author(s) 2023.
World J Psychiatry. Jun 19, 2023; 13(6): 361-375
Published online Jun 19, 2023. doi: 10.5498/wjp.v13.i6.361
Published online Jun 19, 2023. doi: 10.5498/wjp.v13.i6.361
Table 1 Descriptive statistics of depression, smartphone addiction and sleep (n = 692)
Variables | All | Female | Male | Test statistic | P value | |||
Mean | SD | Mean | SD | Mean | SD | |||
Depression | 5.082 | 4.971 | 5.425 | 4.656 | 4.985 | 5.056 | -0.966 | 0.335 |
Smartphone addiction | 39.126 | 11.252 | 39 | 10.668 | 39.161 | 11.422 | 0.157 | 0.876 |
Pittsburgh Sleep Quality Index | 5.496 | 2.827 | 5.856 | 3.023 | 5.393 | 2.763 | -1.790 | 0.074 |
Sleep quality | 0.990 | 0.731 | 1.059 | 0.771 | 0.970 | 0.718 | -1.323 | 0.186 |
Sleep latency | 0.906 | 0.858 | 0.928 | 0.897 | 0.900 | 0.848 | -0.360 | 0.719 |
Sleep duration | 1.009 | 0.766 | 1.052 | 0.768 | 0.996 | 0.766 | -0.797 | 0.426 |
Habitual sleep efficiency | 0.201 | 0.542 | 0.190 | 0.483 | 0.204 | 0.558 | 0.293 | 0.770 |
Sleep disturbances | 0.883 | 0.574 | 0.915 | 0.584 | 0.874 | 0.571 | -0.784 | 0.434 |
Sleep medication | 0.104 | 0.441 | 0.111 | 0.467 | 0.102 | 0.434 | -0.224 | 0.823 |
Day dysfunction | 1.403 | 1.007 | 1.601 | 1.009 | 1.347 | 1.000 | -2.771 | 0.006 |
Table 2 Correlation analyses among depression, smartphone addiction, and sleep (n = 692)
No. | Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | Depression | 1.000 | |||||||||
2 | Smartphone addiction | 0.330a | 1.000 | ||||||||
3 | Pittsburgh Sleep Quality Index | 0.503a | 0.250a | 1.000 | |||||||
4 | Sleep quality | 0.315a | 0.153a | 0.738a | 1.000 | ||||||
5 | Sleep latency | 0.334a | 0.203a | 0.676a | 0.483a | 1.000 | |||||
6 | Sleep duration | 0.164a | 0.027 | 0.470a | 0.204a | 0.072c | 1.000 | ||||
7 | Habitual sleep efficiency | 0.090b | 0.060 | 0.378a | 0.151a | 0.156a | 0.226a | 1.000 | |||
8 | Sleep disturbances | 0.369a | 0.182a | 0.539a | 0.311a | 0.351a | 0.091b | 0.104a | 1.000 | ||
9 | Sleep medication | 0.232a | 0.036 | 0.373a | 0.219a | 0.194a | -0.007 | 0.076b | 0.191a | 1.000 | |
10 | Daytime dysfunction | 0.414a | 0.246a | 0.664a | 0.425a | 0.272a | 0.179a | 0.016 | 0.210a | 0.140a | 1.000 |
Table 3 Multiple linear regression of depression (n = 685)
Variables | Model 1 | Model 2 | Model 3 |
Sleep quality | - | - | 0.158 |
Sleep latency | - | - | 0.587a |
Sleep duration | - | - | 0.471b |
Habitual sleep efficiency | - | - | 0.185 |
Sleep disturbances | - | - | 1.817a |
Sleep medication | - | - | 1.436a |
Daytime dysfunction | - | - | 1.304a |
Smartphone addiction | - | 0.141a | 0.082a |
Age | -0.130 | -0.113 | -0.066 |
Gender | 0.526 | 0.602 | 0.112 |
Nationality | -0.524 | -0.570 | -0.292 |
Political status | 0.435 | -0.035 | -0.102 |
Only child | -0.279 | -0.047 | 0.092 |
Home location | -0.557 | -0.668 | -0.392 |
Family socioeconomic status | -0.170 | -0.153 | -0.181 |
Father’ education | -0.115 | -0.152 | 0.228 |
Observations | 685 | 685 | 685 |
Adjusted R2 | 0.011 | 0.116 | 0.352 |
Table 4 Bootstrapping indirect effect and 95% confidence interval for mediation model (n = 692)
Effect path | Estimated effect | P value | Standard errors | 95%CI |
Total effects | 0.180 | 0.001 | 0.025 | 0.134-0.233 |
Smartphone addiction-depression | 0.104 | 0.001 | 0.022 | 0.063-0.149 |
Smartphone addiction-sleep latency/sleep; disturbances/daytime dysfunction-depression | 0.076 | 0.001 | 0.012 | 0.053-0.102 |
Smartphone addiction-sleep latency-depression | 0.014 | 0.001 | 0.005 | 0.006-0.027 |
Smartphone addiction-sleep disturbances-depression | 0.022 | 0.000 | 0.007 | 0.011-0.040 |
Smartphone addiction-daytime dysfunction-depression | 0.040 | 0.001 | 0.009 | 0.024-0.059 |
- Citation: Gao WJ, Hu Y, Ji JL, Liu XQ. Relationship between depression, smartphone addiction, and sleep among Chinese engineering students during the COVID-19 pandemic. World J Psychiatry 2023; 13(6): 361-375
- URL: https://www.wjgnet.com/2220-3206/full/v13/i6/361.htm
- DOI: https://dx.doi.org/10.5498/wjp.v13.i6.361