BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang T, Gu J, Guo J, Chen K, Li H, Wang J. Renalase Attenuates Mouse Fatty Liver Ischemia/Reperfusion Injury through Mitigating Oxidative Stress and Mitochondrial Damage via Activating SIRT1. Oxid Med Cell Longev 2019;2019:7534285. [PMID: 31949882 DOI: 10.1155/2019/7534285] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang H, Zhang P, Wang Q, Cheng K, Zhao Y. The research development of STAT3 in hepatic ischemia-reperfusion injury. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1066222] [Reference Citation Analysis]
2 Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M, Sturza A. Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. Oxidative Medicine and Cellular Longevity 2022;2022:1-27. [DOI: 10.1155/2022/4032704] [Reference Citation Analysis]
3 Vijayakumar A, Mahapatra NR. Renalase: a novel regulator of cardiometabolic and renal diseases. Hypertens Res 2022. [PMID: 35941358 DOI: 10.1038/s41440-022-00986-1] [Reference Citation Analysis]
4 Zeng C, Chen M. Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022;12:1079. [PMID: 36008973 DOI: 10.3390/biom12081079] [Reference Citation Analysis]
5 Li X, Wu L, Tian X, Zheng W, Yuan M, Tian X, Zuo H, Song H, Shen Z. miR-29a-3p in Exosomes from Heme Oxygenase-1 Modified Bone Marrow Mesenchymal Stem Cells Alleviates Steatotic Liver Ischemia-Reperfusion Injury in Rats by Suppressing Ferroptosis via Iron Responsive Element Binding Protein 2. Oxid Med Cell Longev 2022;2022:6520789. [PMID: 35720183 DOI: 10.1155/2022/6520789] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Xuan W, Lu X, Yang Z, Li J, Jin W, Li Y. Propofol Protects Against Erastin-Induced Ferroptosis in HT-22 Cells. J Mol Neurosci 2022. [PMID: 35727524 DOI: 10.1007/s12031-022-02017-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Stojanovic D, Mitic V, Stojanovic M, Milenkovic J, Ignjatovic A, Milojkovic M. The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Front Cardiovasc Med 2022;9:845878. [PMID: 35711341 DOI: 10.3389/fcvm.2022.845878] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Bhat JA, Kumar M. Neuroprotective Effects of Theobromine in permanent bilateral common carotid artery occlusion rat model of cerebral hypoperfusion. Metab Brain Dis 2022. [PMID: 35587851 DOI: 10.1007/s11011-022-00995-6] [Reference Citation Analysis]
9 Li Y, Wu K, Zeng S, Zou L, Li X, Xu C, Li B, Liu X, Li Z, Zhu W, Fan S, Chen J. The Role of Mitophagy in Viral Infection. Cells 2022;11:711. [DOI: 10.3390/cells11040711] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Hou W, Wei B, Liu HS. The Protective Effect of Panax notoginseng Mixture on Hepatic Ischemia/Reperfusion Injury in Mice via Regulating NR3C2, SRC, and GAPDH. Front Pharmacol 2021;12:756259. [PMID: 34858181 DOI: 10.3389/fphar.2021.756259] [Reference Citation Analysis]
11 Baraja A, Sunarto FR, Adji AS, Handajani F, Rahman FS. Deletion of the RNLS Gene using CRISPR/Cas9 as Pancreatic Cell β Protection against Autoimmune and ER Stress for Type 1 Diabetes Mellitus. Open Access Maced J Med Sci 2021;9:613-619. [DOI: 10.3889/oamjms.2021.7658] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Knop W, Serwin NM, Cecerska-Heryć E, Grygorcewicz B, Dołęgowska B, Gomółka A, Wiśniewska M, Ciechanowski K. Elevated Levels of Renalase, the β-NAD(P)H Isomerase, Can Be Used as Risk Factors of Major Adverse Cardiovascular Events and All-Cause Death in Patients with Chronic Kidney Disease. Biomolecules 2021;11:1514. [PMID: 34680147 DOI: 10.3390/biom11101514] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Czerwińska K, Poręba R, Gać P. Renalase-A new understanding of its enzymatic and non-enzymatic activity and its implications for future research. Clin Exp Pharmacol Physiol 2021. [PMID: 34545616 DOI: 10.1111/1440-1681.13594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Pointer TC, Gorelick FS, Desir GV. Renalase: A Multi-Functional Signaling Molecule with Roles in Gastrointestinal Disease. Cells 2021;10:2006. [PMID: 34440775 DOI: 10.3390/cells10082006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
15 Stojanovic D, Mitic V, Stojanovic M, Petrovic D, Ignjatovic A, Milojkovic M, Dunjic O, Milenkovic J, Bojanic V, Deljanin Ilic M. The Discriminatory Ability of Renalase and Biomarkers of Cardiac Remodeling for the Prediction of Ischemia in Chronic Heart Failure Patients With the Regard to the Ejection Fraction. Front Cardiovasc Med 2021;8:691513. [PMID: 34395559 DOI: 10.3389/fcvm.2021.691513] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Zhang H, Yan Q, Wang X, Chen X, Chen Y, Du J, Chen L. The Role of Mitochondria in Liver Ischemia-Reperfusion Injury: From Aspects of Mitochondrial Oxidative Stress, Mitochondrial Fission, Mitochondrial Membrane Permeable Transport Pore Formation, Mitophagy, and Mitochondria-Related Protective Measures. Oxid Med Cell Longev 2021;2021:6670579. [PMID: 34285766 DOI: 10.1155/2021/6670579] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
17 Telkoparan-Akillilar P, Cevik D. Identification of miR-17, miR-21, miR-27a, miR-106b and miR-222 as endoplasmic reticulum stress-related potential biomarkers in circulation of patients with atherosclerosis. Mol Biol Rep 2021;48:3503-13. [PMID: 33860430 DOI: 10.1007/s11033-021-06352-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
18 Tokinoya K, Sekine N, Aoki K, Ono S, Kuji T, Sugasawa T, Yoshida Y, Takekoshi K. Effects of renalase deficiency on liver fibrosis markers in a nonalcoholic steatohepatitis mouse model. Mol Med Rep 2021;23:210. [PMID: 33495844 DOI: 10.3892/mmr.2021.11849] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Zhou R, Li S, Mei X, Jiang T, Wang Q. Remifentanil up-regulates HIF1α expression to ameliorate hepatic ischaemia/reperfusion injury via the ZEB1/LIF axis. J Cell Mol Med 2020;24:13196-207. [PMID: 32996684 DOI: 10.1111/jcmm.15929] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
20 Ko SF, Chen YL, Sung PH, Chiang JY, Chu YC, Huang CC, Huang CR, Yip HK. Hepatic 31 P-magnetic resonance spectroscopy identified the impact of melatonin-pretreated mitochondria in acute liver ischaemia-reperfusion injury. J Cell Mol Med 2020;24:10088-99. [PMID: 32691975 DOI: 10.1111/jcmm.15617] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
21 Li R, Toan S, Zhou H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY) 2020;12:6467-85. [PMID: 32213662 DOI: 10.18632/aging.102972] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]