BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang Q, Sun B, Liu Q, Cai M, Wu R, Wang F, Yao Y, Wang Y, Wang X. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF1-dependent mechanism. FASEB J 2019;33:2971-81. [PMID: 30339471 DOI: 10.1096/fj.201801393RRR] [Cited by in Crossref: 22] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhu R, Guo D, Li R, Feng Y, Yang X, Huang Q, Zheng Y, Shi D, Huang J. A long non-coding RNA lnc210 promotes adipogenic differentiation of buffalo intramuscular adipocytes. Anim Biotechnol 2022;:1-9. [PMID: 36001396 DOI: 10.1080/10495398.2022.2114082] [Reference Citation Analysis]
2 Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022;10:929183. [DOI: 10.3389/fcell.2022.929183] [Reference Citation Analysis]
3 Gebeyew K, Yang C, Mi H, Cheng Y, Zhang T, Hu F, Yan Q, He Z, Tang S, Tan Z. Lipid metabolism and m6A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet. J Anim Sci Biotechnol 2022;13:85. [PMID: 35821163 DOI: 10.1186/s40104-022-00733-z] [Reference Citation Analysis]
4 Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022;79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wilkinson E, Cui YH, He YY. Roles of RNA Modifications in Diverse Cellular Functions. Front Cell Dev Biol 2022;10:828683. [PMID: 35350378 DOI: 10.3389/fcell.2022.828683] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 Li Y, Meng L, Zhao B. The roles of N6-methyladenosine methylation in the regulation of bone development, bone remodeling and osteoporosis. Pharmacol Ther 2022;238:108174. [PMID: 35346729 DOI: 10.1016/j.pharmthera.2022.108174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Xu Z, Lv B, Qin Y, Zhang B. Emerging Roles and Mechanism of m6A Methylation in Cardiometabolic Diseases. Cells 2022;11:1101. [DOI: 10.3390/cells11071101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus ) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022;10:e13130. [DOI: 10.7717/peerj.13130] [Reference Citation Analysis]
9 Rønningen T, Dahl MB, Valderhaug TG, Cayir A, Keller M, Tönjes A, Blüher M, Böttcher Y. m6A Regulators in Human Adipose Tissue - Depot-Specificity and Correlation With Obesity. Front Endocrinol (Lausanne) 2021;12:778875. [PMID: 34950106 DOI: 10.3389/fendo.2021.778875] [Reference Citation Analysis]
10 Yang X, Wang J, Ma X, Du J, Mei C, Zan L. Transcriptome-wide N 6-Methyladenosine Methylome Profiling Reveals m6A Regulation of Skeletal Myoblast Differentiation in Cattle (Bos taurus). Front Cell Dev Biol 2021;9:785380. [PMID: 34938736 DOI: 10.3389/fcell.2021.785380] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
11 Zhang Y, Liang C, Wu X, Pei J, Guo X, Chu M, Ding X, Bao P, Kalwar Q, Yan P. Integrated Study of Transcriptome-wide m6A Methylome Reveals Novel Insights Into the Character and Function of m6A Methylation During Yak Adipocyte Differentiation. Front Cell Dev Biol 2021;9:689067. [PMID: 34926439 DOI: 10.3389/fcell.2021.689067] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Yang H, Wu YF, Ding J, Liu W, Zhu DS, Shen XF, Guan YT. Comprehensive Analysis of N6-Methyladenosine (m6A) Methylation in Neuromyelitis Optica Spectrum Disorders. Front Genet 2021;12:735454. [PMID: 34899833 DOI: 10.3389/fgene.2021.735454] [Reference Citation Analysis]
13 Li Y, Xu Q, Wang Y, Chen D, Du Y, Li R, Liu K, Zhu J, Lin Y. Knockdown of KLF7 inhibits the differentiation of both intramuscular and subcutaneous preadipocytes in goat. Anim Biotechnol 2021;:1-11. [PMID: 34890305 DOI: 10.1080/10495398.2021.2011739] [Reference Citation Analysis]
14 Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids 2021;26:1270-9. [PMID: 34853726 DOI: 10.1016/j.omtn.2021.10.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
15 Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. Wiley Interdiscip Rev RNA 2021;:e1700. [PMID: 34664402 DOI: 10.1002/wrna.1700] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Zhang Y, Chen W, Zheng X, Guo Y, Cao J, Zhang Y, Wen S, Gao W, Wu Y. Regulatory role and mechanism of m6A RNA modification in human metabolic diseases. Mol Ther Oncolytics 2021;22:52-63. [PMID: 34485686 DOI: 10.1016/j.omto.2021.05.003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Zong X, Xiao X, Shen B, Jiang Q, Wang H, Lu Z, Wang F, Jin M, Min J, Wang F, Wang Y. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res 2021;49:5537-52. [PMID: 33999206 DOI: 10.1093/nar/gkab343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 36] [Article Influence: 1.0] [Reference Citation Analysis]
18 Du Y, Wang Y, Xu Q, Zhu J, Lin Y. TMT-based quantitative proteomics analysis reveals the key proteins related with the differentiation process of goat intramuscular adipocytes. BMC Genomics 2021;22:417. [PMID: 34090334 DOI: 10.1186/s12864-021-07730-y] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
19 Sun M, Zhang X. Epigenetic regulation of N6-methyladenosine modifications in obesity. J Diabetes Investig 2021;12:1306-15. [PMID: 33979018 DOI: 10.1111/jdi.13571] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
20 Song D, Hou J, Wu J, Wang J. Role of N6-Methyladenosine RNA Modification in Cardiovascular Disease. Front Cardiovasc Med 2021;8:659628. [PMID: 34026872 DOI: 10.3389/fcvm.2021.659628] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Li J, Pei Y, Zhou R, Tang Z, Yang Y. Regulation of RNA N6-methyladenosine modification and its emerging roles in skeletal muscle development. Int J Biol Sci 2021;17:1682-92. [PMID: 33994853 DOI: 10.7150/ijbs.56251] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
22 Chen YS, Ouyang XP, Yu XH, Novák P, Zhou L, He PP, Yin K. N6-Adenosine Methylation (m6A) RNA Modification: an Emerging Role in Cardiovascular Diseases. J Cardiovasc Transl Res 2021. [PMID: 33630241 DOI: 10.1007/s12265-021-10108-w] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
23 Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 2021;6:74. [PMID: 33611339 DOI: 10.1038/s41392-020-00450-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 138] [Article Influence: 19.0] [Reference Citation Analysis]
24 Cheng B, Leng L, Li Z, Wang W, Jing Y, Li Y, Wang N, Li H, Wang S. Profiling of RNA N 6 -Methyladenosine Methylation Reveals the Critical Role of m6A in Chicken Adipose Deposition. Front Cell Dev Biol 2021;9:590468. [PMID: 33614638 DOI: 10.3389/fcell.2021.590468] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
25 Du Y, Zhao Y, Wang Y, Meng Q, Zhu J, Lin Y. MiR-25-3p regulates the differentiation of intramuscular preadipocytes in goat via targeting KLF4. Arch Anim Breed 2021;64:17-25. [PMID: 34084900 DOI: 10.5194/aab-64-17-2021] [Reference Citation Analysis]
26 Song T, Yang Y, Jiang S, Peng J. Novel Insights into Adipogenesis from the Perspective of Transcriptional and RNA N6-Methyladenosine-Mediated Post-Transcriptional Regulation. Adv Sci (Weinh) 2020;7:2001563. [PMID: 33173729 DOI: 10.1002/advs.202001563] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
27 Huang J, Feng X, Zhu R, Guo D, Wei Y, Cao X, Ma Y, Shi D. Comparative transcriptome analysis reveals that PCK1 is a potential gene affecting IMF deposition in buffalo. BMC Genomics 2020;21:710. [PMID: 33045988 DOI: 10.1186/s12864-020-07120-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
28 Zong X, Wang H, Xiao X, Zhang Y, Hu Y, Wang F, Wang Y, Lu Z. Enterotoxigenic Escherichia coli infection promotes enteric defensin expression via FOXO6-METTL3-m6A-GPR161 signalling axis. RNA Biol 2021;18:576-86. [PMID: 32914682 DOI: 10.1080/15476286.2020.1820193] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhang B, Jiang H, Dong Z, Sun A, Ge J. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis 2021;8:746-58. [PMID: 34522705 DOI: 10.1016/j.gendis.2020.07.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
30 Zhu ZM, Huo FC, Pei DS. Function and evolution of RNA N6-methyladenosine modification. Int J Biol Sci 2020;16:1929-40. [PMID: 32398960 DOI: 10.7150/ijbs.45231] [Cited by in Crossref: 13] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
31 Zhao Y, Shi Y, Shen H, Xie W. m6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 2020;13:35. [PMID: 32276589 DOI: 10.1186/s13045-020-00872-8] [Cited by in Crossref: 34] [Cited by in F6Publishing: 72] [Article Influence: 17.0] [Reference Citation Analysis]
32 Saxena R, Weintraub NL, Tang Y. Optimizing cardiac ischemic preconditioning and postconditioning via epitranscriptional regulation. Med Hypotheses 2020;135:109451. [PMID: 31731058 DOI: 10.1016/j.mehy.2019.109451] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
33 Huang T, Guo J, Lv Y, Zheng Y, Feng T, Gao Q, Zeng W. Meclofenamic acid represses spermatogonial proliferation through modulating m6A RNA modification. J Anim Sci Biotechnol 2019;10:63. [PMID: 31333841 DOI: 10.1186/s40104-019-0361-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]