BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang M, Yan FB, Li F, Jiang KR, Li DH, Han RL, Li ZJ, Jiang RR, Liu XJ, Kang XT, Sun GR. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Sci Rep 2017;7:45564. [PMID: 28378745 DOI: 10.1038/srep45564] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, Acloque H, Weber M. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol 2022;20:70. [PMID: 35317801 DOI: 10.1186/s12915-022-01270-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 de Sena Brandine G, Smith AD. Fast and memory-efficient mapping of short bisulfite sequencing reads using a two-letter alphabet. NAR Genom Bioinform 2021;3:lqab115. [PMID: 34988438 DOI: 10.1093/nargab/lqab115] [Reference Citation Analysis]
3 Solé E, González-Prendes R, Oliinychenko Y, Tor M, Ros-Freixedes R, Estany J, Pena RN. Transcriptome shifts triggered by vitamin A and SCD genotype interaction in Duroc pigs. BMC Genomics 2022;23:16. [PMID: 34991486 DOI: 10.1186/s12864-021-08244-3] [Reference Citation Analysis]
4 Ibeagha-Awemu EM, Yu Y. Consequence of epigenetic processes on animal health and productivity: is additional level of regulation of relevance? Anim Front 2021;11:7-18. [PMID: 34934525 DOI: 10.1093/af/vfab057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Abdelmanova AS, Dotsev AV, Romanov MN, Stanishevskaya OI, Gladyr EA, Rodionov AN, Vetokh AN, Volkova NA, Fedorova ES, Gusev IV, Griffin DK, Brem G, Zinovieva NA. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens. Biology (Basel) 2021;10:876. [PMID: 34571753 DOI: 10.3390/biology10090876] [Reference Citation Analysis]
6 Nematbakhsh S, Selamat J, Idris LH, Abdull Razis AF. Chicken Authentication and Discrimination via Live Weight, Body Size, Carcass Traits, and Breast Muscle Fat Content Clustering as Affected by Breed and Sex Varieties in Malaysia. Foods 2021;10:1575. [PMID: 34359445 DOI: 10.3390/foods10071575] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Ran J, Li J, Yin L, Zhang D, Yu C, Du H, Jiang X, Yang C, Liu Y. Comparative Analysis of Skeletal Muscle DNA Methylation and Transcriptome of the Chicken Embryo at Different Developmental Stages. Front Physiol 2021;12:697121. [PMID: 34276416 DOI: 10.3389/fphys.2021.697121] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Kim DY, Kim JM. Multi-omics integration strategies for animal epigenetic studies - A review. Anim Biosci 2021;34:1271-82. [PMID: 33902167 DOI: 10.5713/ab.21.0042] [Reference Citation Analysis]
9 Dong W, Yang J, Zhang Y, Liu S, Ning C, Ding X, Wang W, Zhang Y, Zhang Q, Jiang L. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. J Anim Breed Genet 2021;138:562-73. [PMID: 33620112 DOI: 10.1111/jbg.12530] [Reference Citation Analysis]
10 Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2020;11:613636. [PMID: 33708235 DOI: 10.3389/fgene.2020.613636] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
11 Gong P, Jing Y, Liu Y, Wang L, Wu C, Du Z, Li H. Whole-genome bisulfite sequencing of abdominal adipose reveals DNA methylation pattern variations in broiler lines divergently selected for fatness. J Anim Sci 2021;99:skaa408. [PMID: 33373456 DOI: 10.1093/jas/skaa408] [Reference Citation Analysis]
12 Raddatz G, Arsenault RJ, Aylward B, Whelan R, Böhl F, Lyko F. A chicken DNA methylation clock for the prediction of broiler health. Commun Biol 2021;4:76. [PMID: 33462334 DOI: 10.1038/s42003-020-01608-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Takamura N, Seo H, Ohta K. TET3 dioxygenase modulates gene conversion at the avian immunoglobulin variable region via demethylation of non-CpG sites in pseudogene templates. Genes Cells 2021;26:121-35. [PMID: 33421268 DOI: 10.1111/gtc.12828] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Beacon TH, Davie JR. The chicken model organism for epigenomic research. Genome 2021;64:476-89. [PMID: 33232179 DOI: 10.1139/gen-2020-0129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Corbett RJ, Te Pas MFW, van den Brand H, Groenen MAM, Crooijmans RPMA, Ernst CW, Madsen O. Genome-Wide Assessment of DNA Methylation in Chicken Cardiac Tissue Exposed to Different Incubation Temperatures and CO2 Levels. Front Genet 2020;11:558189. [PMID: 33193638 DOI: 10.3389/fgene.2020.558189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
16 Zhao C, Ji G, Carrillo JA, Li Y, Tian F, Baldwin RL, Zan L, Song J. The Profiling of DNA Methylation and Its Regulation on Divergent Tenderness in Angus Beef Cattle. Front Genet 2020;11:939. [PMID: 33005170 DOI: 10.3389/fgene.2020.00939] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
17 Li D, Sun G, Zhang M, Cao Y, Zhang C, Fu Y, Li F, Li G, Jiang R, Han R, Li Z, Wang Y, Tian Y, Liu X, Li W, Kang X. Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genomics 2020;21:511. [PMID: 32703156 DOI: 10.1186/s12864-020-06900-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
18 Zhang M, Li D, Zhai Y, Wang Z, Ma X, Zhang D, Li G, Han R, Jiang R, Li Z, Kang X, Sun G. The Landscape of DNA Methylation Associated With the Transcriptomic Network of Intramuscular Adipocytes Generates Insight Into Intramuscular Fat Deposition in Chicken. Front Cell Dev Biol 2020;8:206. [PMID: 32300590 DOI: 10.3389/fcell.2020.00206] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
19 Sun GR, Zhang M, Sun JW, Li F, Ma XF, Li WT, Han RL, Li ZJ, Jiang RR, Li GX, Yan FB, Kang XT. Krüppel-like factor KLF9 inhibits chicken intramuscular preadipocyte differentiation. Br Poult Sci 2019;60:790-7. [PMID: 31542936 DOI: 10.1080/00071668.2019.1657229] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
20 Sun D, Maney DL, Layman TS, Chatterjee P, Yi SV. Regional epigenetic differentiation of the Z Chromosome between sexes in a female heterogametic system. Genome Res 2019;29:1673-84. [PMID: 31548356 DOI: 10.1101/gr.248641.119] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
21 Liu Z, Han S, Shen X, Wang Y, Cui C, He H, Chen Y, Zhao J, Li D, Zhu Q, Yin H. The landscape of DNA methylation associated with the transcriptomic network in layers and broilers generates insight into embryonic muscle development in chicken. Int J Biol Sci 2019;15:1404-18. [PMID: 31337971 DOI: 10.7150/ijbs.35073] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
22 Li D, Li F, Jiang K, Zhang M, Han R, Jiang R, Li Z, Tian Y, Yan F, Kang X, Sun G. Integrative analysis of long noncoding RNA and mRNA reveals candidate lncRNAs responsible for meat quality at different physiological stages in Gushi chicken. PLoS One 2019;14:e0215006. [PMID: 30964907 DOI: 10.1371/journal.pone.0215006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
23 Zhang M, Li F, Sun JW, Li DH, Li WT, Jiang RR, Li ZJ, Liu XJ, Han RL, Li GX, Wang YB, Tian YD, Kang XT, Sun GR. LncRNA IMFNCR Promotes Intramuscular Adipocyte Differentiation by Sponging miR-128-3p and miR-27b-3p. Front Genet 2019;10:42. [PMID: 30804984 DOI: 10.3389/fgene.2019.00042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
24 Wen C, Yan W, Zheng J, Ji C, Zhang D, Sun C, Yang N. Feed efficiency measures and their relationships with production and meat quality traits in slower growing broilers. Poult Sci 2018;97:2356-64. [PMID: 29669019 DOI: 10.3382/ps/pey062] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
25 David S, Mersch M, Foissac S, Collin A, Pitel F, Coustham V. Genome-Wide Epigenetic Studies in Chicken: A Review. Epigenomes 2017;1:20. [DOI: 10.3390/epigenomes1030020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
26 Zhang Y, Li D, Han R, Wang Y, Li G, Liu X, Tian Y, Kang X, Li Z. Transcriptome analysis of the pectoral muscles of local chickens and commercial broilers using Ribo-Zero ribonucleic acid sequencing. PLoS One 2017;12:e0184115. [PMID: 28863190 DOI: 10.1371/journal.pone.0184115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
27 De Paoli-Iseppi R, Deagle BE, McMahon CR, Hindell MA, Dickinson JL, Jarman SN. Measuring Animal Age with DNA Methylation: From Humans to Wild Animals. Front Genet 2017;8:106. [PMID: 28878806 DOI: 10.3389/fgene.2017.00106] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]