Koulouras V, Papathanakos G, Papathanasiou A, Nakos G. Efficacy of prone position in acute respiratory distress syndrome patients: A pathophysiology-based review. World J Crit Care Med 2016; 5(2): 121-136 [PMID: 27152255 DOI: 10.5492/wjccm.v5.i2.121]
Corresponding Author of This Article
Vasilios Koulouras, Associate Professor in Intensive Care Medicine, Intensive Care Unit, University Hospital of Ioannina, Stavros Niarchos Avenue, 45500 Ioannina, Greece. vpkoulouras@yahoo.gr
Research Domain of This Article
Critical Care Medicine
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Bilateral opacities - not fully explained by effusions, lobar/lung collage, or nodules
Origin of edema
Respiratory failure not fully explained by cardiac failure of fluid overload. Need objective assessment (e.g., echocardiography) to exclude hydrostatic edema if no risk factor present
The individual patient meta-analysis of the four major clinical trials available clearly shows that with prone positioning, the absolute mortality of severely hypoxemic ARDS patients may be reduced by approximately 10%
Ventilation in the prone position significantly reduced overall mortality in patients with severe acute respiratory distress syndrome. Sufficient duration of prone positioning was statistically significant in associated with a reduction in overall mortality
Limited supportive evidence that specific interventions can decrease mortality in ARDS, while low tidal volumes and prone positioning in severe ARDS seem effective
(93 with overall mortality reported)
(44 trials reported mortality as a primary outcome)
Prone positioning tends to reduce the mortality rates in ARDS patients, especially when used in conjunction with a lung protective strategy and longer prone position durations. Prone positioning for ARDS patients should be prioritized over other invasive procedures because related life-threatening complications are rare
No convincing evidence of benefit nor harm from universal application of prone positioning in adults with hypoxaemia mechanically ventilated in intensive care units Three subgroups (early implementation of prone positioning, prolonged adoption of prone positioning and severe hypoxaemia at study entry) suggested that prone positioning may confer a statistically significant mortality advantage
Table 3 Absolute and relative contraindications to prone positioning
Absolute
Unmonitored or significantly increased intracranial pressure
Unstable vertebral fractures
Relative
Difficult airway management
Tracheal surgery or sternotomy during the previous 15 d
New tracheostomy (less than 24 h)
Single anterior chest tube with air leaks
Serious facial trauma or facial surgery during the previous 15 d
Increased intraocular pressure
Hemodynamic instability or recent cardiopulmonary arrest
Cardiac pacemaker inserted in the last 2 d
Ventricular assist device
Intra-aortic balloon pump
Deep venous thrombosis treated for less than 2 d
Massive hemoptysis requiring an immediate surgical or interventional radiology procedure
Continuous dialysis
Severe chest wall lesions ± rib fractures
Recent cardiothoracic surgery/unstable mediastinum or open chest
Multiple trauma with unstabilized fractures
Femur, or pelvic fractures ± external pelvic fixation
Pregnant women
Recent abdominal surgery or stoma formation
Kyphoscoliosis
Advanced osteoarthritis or rheumatoid arthritis
Body weight greater than 135 kg
Table 4 Potential complications of prone positioning
Edema (facial, airway, limbs, thorax)
Pressure sores
Conjunctival hemorrhage
Compression of nerves and retinal vessels
Endotracheal tube dislocation (main stem intubation or non-scheduled extubation), obstruction or kinking
Airway suctioning difficulty
Transient hypotension or oxygen desaturation
Worsening gas exchange
Pneumothorax
Thoracic drain kinking or obstruction
Cardiac events
Inadvertent dislodging of Swan-Ganz catheter
Vascular catheter kinking or removal
Vascular catheter malfunction during continuous veno-venous hemofiltration
Deep venous thrombosis
Urinary bladder catheter or nasogastric feeding tube displacement
Difficulty in instituting cardiopulmonary resuscitation
Citation: Koulouras V, Papathanakos G, Papathanasiou A, Nakos G. Efficacy of prone position in acute respiratory distress syndrome patients: A pathophysiology-based review. World J Crit Care Med 2016; 5(2): 121-136