Systematic Reviews Open Access
Copyright ©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Crit Care Med. Sep 9, 2025; 14(3): 105299
Published online Sep 9, 2025. doi: 10.5492/wjccm.v14.i3.105299
Energy expenditure measurement in critical care: Implications for personalized nutrition support
Jiayang Chen, Kay Choong See, Department of Medicine, National University Hospital, Singapore 119228, Singapore
ORCID number: Jiayang Chen (0000-0003-1900-0935); Kay Choong See (0000-0003-2528-7282).
Author contributions: Jiayang C and See KC were involved in the screening, selection and data extraction of included studies, as well as the writing and editing of the final manuscript.
Conflict-of-interest statement: Authors have no conflict of interest.
PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Jiayang Chen, Department of Medicine, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Singapore 119228, Singapore. jiayang_chen1997@live.com
Received: January 18, 2025
Revised: March 5, 2025
Accepted: April 18, 2025
Published online: September 9, 2025
Processing time: 182 Days and 11.2 Hours

Abstract
BACKGROUND

Accurate measurement of energy expenditure (EE) is critical for optimizing nutritional support in critically ill patients. Indirect calorimetry (IC) is the reference method used, but its availability at the bedside is limited. As a result, numerous predictive equations have been devised to estimate EE in critically ill patients, along with other more novel methods recently proposed.

AIM

To evaluate current methods of measuring EE in critical care, focusing on practical challenges, accuracy, feasibility, and limitations. We will also discuss how these methods contribute to improving nutrition support strategies for intensive care unit patients for a more personalised and effective solution.

METHODS

A comprehensive search was conducted in PubMed and EMBASE for studies published from December 2014 to December 2024. Eligible studies compared EE measurement methods in critically ill populations. Data extraction and quality assessment followed PRISMA guidelines. Adherence to reporting standards was assessed using the TRIPOD questionnaire and risk of bias was evaluated using the PROBAST tool.

RESULTS

Twenty five original studies met the inclusion criteria and were analysed.

CONCLUSION

Each method has unique strengths and limitations. We found that while IC remains the reference standard, less accurate predictive equations have greater accessibility and ease of implementation. Emerging technologies show promise for bedside applicability. Future research should address practical barriers and validate newer approaches.

Key Words: Energy expenditure; Nutrition in critical care; Indirect calorimetry; Predictive equations; Emerging technologies; Feeding in critical care

Core Tip: This systematic review evaluates current methods of measuring energy expenditure in critical care, focusing on practical challenges, accuracy, feasibility, and limitations of each one. We find that indirect calorimetry (IC) remains the gold standard with the most accurate measurements, but there remains significant difficulty in widespread use. Predictive equations are more accessible but lack accuracy. However, there are new ways of using IC and predictive equations that bring promise, and new alternative methods also show potential for application in the clinical context.



INTRODUCTION

Total energy expenditure (EE) is defined as the total amount of energy humans need to function, and consists of resting EE (REE) and activity related energy[1]. REE is often taken to be closely reflective of total EE of intensive care unit (ICU) patients due to minimal physical exertion[2]. Assessing EE has several uses in the ICU setting. Firstly, it is most often used to determine patients’ caloric requirements[3], the accurate assessment of which is vital to avoid harmful effects of under- or overfeeding[4]. Secondly, it can be used to estimate substrate-specific oxidation of proteins, carbohydrates and fats[5] to help find the optimal amount of macronutrients needed for feeding, thereby helping to guide nutritional support and improve outcomes in the ICU. Thirdly, it can help to evaluate the metabolic impact of specific treatments, such as assessing the metabolic effect of targeted temperature management in post cardiac arrest patients and how it may be associated with neurological outcome[6].

EE during critical illness can be influenced by various factors, such as the severity of the illness, the individual's pre-existing health conditions and the impact of pharmacological treatments[2,7]. It is also dependent on which metabolic phase of critical illness the patient is in at the time of measurement[1]. In reality, obtaining consistent accurate measurements of EE is not easy to achieve as each method has its potential drawbacks that limit useability and reliability in the ICU setting.

Indirect calorimetry

Calorimetry is the measurement of energy production from metabolism of macronutrients[8,9]. Indirect calorimetry (IC) is considered the reference standard for assessing EE in the clinical setting and is recommended for accurate measurement resting EE in critically ill patients[10,11]. It does this through measuring oxygen consumption (VO2) and CO2 production (VCO2) and calculating the respiratory quotient (RQ) (the CO2 production to O2 consumption ratio)[12,13] which reflects energy metabolism[9]. The theory will be discussed in greater detail in the following sections. IC is generally preferred to direct calorimetry (DC) which measures actual heat loss as DC is expensive, requires more extensive equipment and technical skill, and is not practical for clinical implementation[9,14].

Predictive equations

Some of the most commonly used predictive equations in setting of ICU are the Harris-Benedict equation, American College of Chest Physicians weight-based method, Mifflin-St Jeor equation, Ireton-Jones equations, Faisy-Fagon equation, and the Penn State equation[15-19]. These can be found in Table 1.

Table 1 Predictive equations.
Equation
Calculation (kcal/day)
ACCP[17]BMI (weight in kg/height in meters squared) < 25: Actual body weight in kg × 25
BMI ≥ 25: Ideal body weight in kg × 25
Harris-Benedict[16]Male: 66.473 + [13.7516 × weight (kg)] + [5.003 × height (cm)] – [6.755 × age (y)]
Female: 655.0955 + [9.5634 × weight (kg)] + [1.8496 × height (cm)] – [4.6756 × age (y)]
Mifflin-St Jeor[18]Male: [10 × weight (kg)] + [6.25 × height (cm)] − [5 × age (y)] + 5
Female: [10 × weight (kg)] + [6.25 × height (cm)] − [5 × age (y)] − 161
Penn State[20]2003a: 0.85 (Harris-Benedict equation) + (175 × Tmax) + (33 × Ve) – 6433
2003b: 0.96 (Mifflin-St Jeor) + 31 (Ve) + 167 (Tmax) – 6212
Ireton-Jones[19]Mechanically ventilated: 1784 – [11 × age (y)] + [5 × weight (kg) + (244, if male) + (239, if trauma present) + (840, if burn present)]
Spontaneously breathing: 629 – [11 × age (y)] + [25 × weight (kg)] − 609 (when BMI > 27)
Faisy-Fagon[15][8 × bodyweight (kg)] + [14 × height (cm)] + [32 × minute ventilation (l/min)] + [94 × body temperature (°C)] – 4834

Apart from IC and predictive equations, several other methods have been proposed as alternatives. One such example would be the calculation of EE based on CO2 measurements from mechanical ventilators or the pulmonary arterial catheter. This has been proposed as a surrogate to IC, and is recommended by existing guidelines in the absence of IC as they have been shown to be superior in accuracy to predictive equations[20].

Rationale for study

Over- and underfeeding patients in the ICU have consistently been shown to be associated with poor clinical outcomes[21-24], and thus accurate measurement of EE is vital in optimising nutritional support and preventing adverse complications[25,26]. Nutritional guidelines have recommended an initial caloric dosing of 25 to 30 kcal/kg/day before advancing towards energy targets as determined by measurement of EE over next 48 to 72 hours[27].

Despite recent advances in technical developments of indirect calorimeters, bedside application remains limited by logistical challenges and availability[28], and variable performance in different patient populations. Patient factors and ongoing treatments such as agitation, fever, use of vasoactive agents, and organ support therapies such as renal replacement therapy can render REE assessment by IC inaccurate[9].

Predictive equations on the other hand tend to be unreliable and lack universal applicability, as they were formulated based on specific patient populations[3]. Significant discrepancies have also been found when predictive equations were used in isolation when compared with results taken from IC measurements[29]. Nutritional guidelines like those from ESPEN and ASPEN similarly discourage the use of predictive equations due to its inaccuracy leading to over- or underestimation of energy requirements[20]. Despite this, the INTENT trial for tailored nutrition interventions in the ICU utilizes weight-based EE calculations[30], highlighting a preference even in research trials for predictive equations. Additionally, it remains debatable whether predictive equations compromise accuracy in favour of convenience, particularly for patients at the extreme ends of body weights.

Similarly, the ventilator-derived VCO2 based (EE: VCO2) method of calculating energy requirements has consistently been shown to be inferior to IC[31] despite guidelines supporting its use.

Objectives

This review examines current methods of measuring EE in critical care, including IC, predictive equations and other alternatives. It also highlights the practical challenges in implementing these measurements at the bedside. By evaluating their accuracy, feasibility, and limitations, this review aims to synthesize existing evidence and provide a framework for optimizing energy delivery in critically ill patients, contributing to more personalized and effective nutrition support strategies.

MATERIALS AND METHODS
Information sources

We have applied for registration with PROSPERO-the International prospective register of systematic reviews and our registration number is CRD42025645920. We designed the screening process of our review based on the PRISMA statement[32] and extensively searched PubMed and Embase for all contemporary English language papers within the past 10 years (from December 2014 to December 2024), using the following search strings. Narrative analyses of each method were then conducted.

PubMed: 2 search strings were conducted and combined to include more relevant studies. Search string A: "Energy Metabolism"[MeSH Terms] OR "Energy Expenditure" OR calorimetry OR "predictive equations" OR "emerging technologies") AND ("Critical Care"[MeSH Terms] OR "Intensive Care Units"[MeSH Terms]) AND (accuracy OR feasibility OR limitations OR "practical challenges"). Search string B: ("energy expenditure" OR "energy metabolism" OR "indirect calorimetry" OR "predictive equations" OR "metabolic monitoring" OR "nutritional assessment") AND ("critical care"[MeSH Terms] OR "intensive care units"[MeSH Terms] OR "critically ill" OR "mechanically ventilated") AND ("nutrition support" OR "nutrition therapy" OR "energy intake" OR "personalized nutrition" OR "nutrition delivery" OR "nutritional optimization" OR "enteral nutrition" OR "parenteral nutrition").

Embase search string: ('energy metabolism' OR 'energy expenditure' OR 'energy use' OR 'calorimetry' OR 'indirect calorimetry' OR 'resting energy expenditure': OR 'REE') AND ('predictive equations' OR 'emerging technologies' AND ('critical care' OR 'intensive care unit' OR 'critical illness' OR ICU) AND (‘accuracy’ OR ‘feasibility’ OR ‘limitations’ OR 'practical challenges' OR 'bedside implementation').

Screening of records

All retrieved citations were first exported to EndNote (version X9) for reference management and compilation. Duplicate records were identified and removed using EndNote’s automated duplicate detection feature. The remaining citations were then imported into Rayyan, a web-based tool for systematic reviews for further duplicate screening and study selection, where an additional duplicate check was performed. Two independent researchers (the two authors of this paper) screened the titles, abstracts, and full texts of records within Rayyan, with conflicts resolved through discussion.

Study selection: Inclusion criteria

(1) Population: Studies involving adult patients in critical care or ICUs. Studies involving patients requiring mechanical ventilation, as they are commonly assessed for EE; (2) Interventions/methods: Studies evaluating IC, predictive equations, or emerging technologies (e.g., wearable devices, metabolic monitors) for measuring EE; (3) Outcomes: Studies reporting accuracy, feasibility, limitations, or practical challenges of these methods in clinical settings; (4) Study design: Original research articles, including observational studies, randomized controlled trials, and validation studies; (5) Language: Studies published in English; and (6) Time frame: Studies published in the last 10 years to capture current practices and technologies.

Study selection: Exclusion criteria

(1) Population: Studies focusing exclusively on paediatric or neonatal populations. Studies focusing exclusively on non-ICU populations, such as outpatient or general medical ward patients; (2) Interventions/methods: Studies not specifically assessing EE (e.g., studies focusing solely on energy intake or nutritional requirements without linking them to EE measurements); (3) Outcomes: Studies not addressing accuracy, feasibility, limitations, or practical challenges of the methods and studies focused on theoretical models or laboratory-only validations without bedside implementation; (4) Study design: Editorials, letters, commentaries, and conference abstracts without sufficient data. Systematic reviews, meta-analyses, and narrative reviews; and (5) Language: Studies published in languages other than English (unless translations are available).

Data extraction

Data on study characteristics, methods, accuracy, feasibility, limitations and applicability to nutritional optimisation of each method of energy measurement were extracted using a standardized template manually (Supplementary material). Two independent reviewers extracted data in parallel to ensure accuracy and consistency. Any inconsistencies in extracted data were resolved through cross-checking and discussion,

Quality assessment

The quality of included studies was assessed using the TRIPOD statement[33] and PROBAST for adherence to reporting standards and for risk of bias[34].

RESULTS
Included studies, adherence to reporting standards, and risk of bias

Out of 999 records screened, 25 articles fulfilled our inclusion criteria and were selected for review (Figure 1; Table 2). The database search was supplemented by reference list checks from existing systematic reviews and meta-analyses. Overall, adherence rates of publications to TRIPOD items ranged from 16% to 100%. Items concerned with model validation, performance sample size, and other miscellaneous information were reported in < 50% of the 25 publications reviewed. Items related to clinical context, study methodology, and implications were better reported, with > 90% of the publications providing adequate information regarding most of the corresponding items in the checklist. These are shown in Figure 2. Risk of bias assessment was conducted using PROBAST, and the results are shown in Figure 3.

Figure 1
Figure 1 PRISMA flow diagram.
Figure 2
Figure 2 Adherence of studies to reporting standards.
Figure 3
Figure 3 Risk of bias assessment.
Table 2 Studies included in review.
No.
Ref.
Method
Sample size
Study findings and outcomes
Challenges of implementation
1Ferreruela et al[36]IC60Good accuracy at FiO2 ≤ 0.6Requires stable FiO2 settings
2Graham et al[38]IC56 patients (all male)VO2 and REE were significantly altered in sepsis, offering potential for early sepsis diagnosisICU operational challenges, patient-specific contraindications
3Grguric et al[42]IC, PE68 patientsSignificant differences between predictive equations and measured REE. Predictive equations often underestimated energy expenditureComplexity of accurately applying predictive equations
4Hickmann et al[35]IC, PE49 ICU 15 healthyEarly exercise increased REE, influenced by inflammation markersControl of exercise conditions in ICU
5Jonckheer et al[59]ET19 CVVH runsBioenergetic imbalances ranged from -28% to +42% of REE; citrate use added significant non-intentional caloriesComplexity of CVVH settings and caloric calculations
6Jonckheer et al[59]ET10 patientsCO2 removal by CVVH slightly alters REE; changes were not clinically significantComplexity of IC during CVVH
7Kagan et al[53]ET80 patients, 497 measurementsLow agreement between REE-VCO2 and indirect calorimetry. Indirect calorimetry remains the gold standardVariability in VCO2 accuracy, reliance on predefined respiratory quotient
8Koekkoek et al[58]ET31 patientsVCO2 overestimated REE; low accuracy compared to ICTechnical challenges in integrating VCO2-based REE measurements
9Kongpolprom[55]PE24No predictive equation accurately estimated REE; Penn State 2010 was the most reliableCost and availability of IC in routine practice
10Liew et al[57]PE108HBE overestimated REE, especially in obese patients (BMI ≥ 30)Resource constraints for IC use
11Lindner et al[46]IC, PE90 ICU patients, 58 healthy controlsPredictive equations showed low accuracy rates; IC recommendedICU-specific variables influencing REE measurements
12Murray et al[52]IC, PE326 patientsEquations underestimated REE; IC superior, particularly in obese populationsResource and training limitations for IC use
13Niederer et al[37]IC38 patients over 7 weeksProgressive hypermetabolism peaking at 3 weeks post-intubation; prolonged stress responseOperational challenges in maintaining longitudinal IC measurements
14Oshima et al[31]ET278 patientsEEVCO2 showed insufficient accuracy compared to indirect calorimetry, particularly in critical statesReliance on stable ventilator settings, limited utility in unstable patients
15Rehal et al[40]IC, ET22 patients, 48 measurementsE-sCOVX and Quark RMR overestimated VO2 and VCO2 by 10% compared to Deltatrac II. Limits of agreement within ± 20%High variability and technical setup requirements
16Rousseau et al[56]IC, PE55None of the predictive equations were accurate; Penn State showed closest agreementNeed for accessible IC devices
17Saseedharan et al[50]IC, ET, PE58 patients, 117 paired measurementsEE from IC was significantly lower than weight-based predictions, highlighting risk of overfeedingResource constraints during the pandemic
18Shinozaki et al[43]ET10 (4 post-surgery, 6 critically ill)Continuous and repeat measurements matched gold standardIntegration with existing ICU setups
19Slingerland-Boot et al[41]IC27 patientsBeacon showed acceptable reliability but slightly underestimated REE compared to QuarkNeed for device calibration and standardization
20Sobhy et al[44]IC, PE50 patientsFaisy-Fagon overestimated caloric needs; PSUm showed higher accuracy. 23 kcal/kg/day offered unbiased estimates.Complexity in applying equations accurately in varied patient conditions
21Stapel et al[48]IC, ET, PE84Comparable accuracy to IC, better than predictive equationsRequires integration with ventilator systems
22Tah et al[51] PE294 (acute phase), 180 (late phase)Single predictive equation valid for both phases, REE influenced by height, weight, age, and minute ventilationDynamic metabolic changes affect predictive accuracy
23Takemae et al[60]IC, PE95Novel equation (KTE) outperformed existing equations for Japanese patientsOperational complexity of IC
24Tatucu-Babet et al[45]ET21 patientsFeasible for early ICU admission; EE lower than predicted by equations; increased over timeComplex setup, reliance on specific ECMO protocols
25Vest et al[54]IC, PE25 patientsIC showed predictive equations underestimated energy needs; actual intake often < 70% of targetIC feasibility low; reliance on empirical equations
DISCUSSION
IC

IC systems can be classified into two types: Closed circuit and open circuit. In a closed-circuit system, the patient breathes within a sealed air system of known volume[3]. However, closed-circuit systems are now rarely utilized in clinical practice. In contrast, open-circuit systems are commonly used in modern clinical settings. These systems involve the patient inhaling ambient air, with expired gases analysed through methods such as dilution, mixing chambers, or breath-by-breath techniques[4], and the Haldane transformation is used to estimate the volume of inspired air from exhaled volumes[9].

Benefits

As mentioned before, IC is the reference standard for measuring EE[10,11] and it is not surprising then that in the papers reviewed, IC measurements consistently outperformed predictive equations, with low bias and strong correlation with reference standards[31,35,36]. IC also demonstrated its advantages in hypermetabolism in specific patient groups. One study showed that IC had higher accuracy in detecting hypermetabolism among coronavirus disease 2019 (COVID-19) patients, with REE measured up to 143% of predicted values by week 3[37]. In another study, IC measurements showed that VO2 and REE were significantly altered in patients with sepsis, offering potential for early sepsis diagnosis, demonstrating potential to improve identification and management of sepsis-related metabolic dysregulation[38].

Mixing chambers have traditionally been used for IC measurements. One of the first few IC devices available-the 30 year-old Deltatrac II® (Datex)-employed a mixing chamber method and demonstrated high precision and accuracy[39]. It is however no longer in production, and this has spurred the development of alternative IC methods such as "breath-by-breath" instruments. Recent studies have demonstrated variable performance of these breath-by-breath systems compared to mixing chamber technology. Rehal et al[40] evaluated 2 modern devices (E-sCOVX and Quark RMR systems) against Deltatrac II and found that both overestimated VO2 and VCO2 compared to the reference standard Deltatrac, corresponding to a 10% higher mean REE, but remained more accurate than predictive equations.

Limitations in accuracy

There are however cases where IC has been shown to display inaccuracy. Slingerland-Boot et al[41] compared the performance of different IC devices (Beacon and Quark) in ventilated ICU patients and showed that the Beacon device underestimated REE by 96.2 kcal/day compared to Quark. The potential sources of error that contribute to these discrepancies are summarised below.

Firstly, the use of IC is limited in patients requiring high values of fraction of inspired oxygen (FiO2) and positive end-expiratory pressure (PEEP). The Haldane transformation needed for IC measurement (which assumes stable nitrogen concentration in gas exchange) becomes unreliable at high FiO2 values because errors in oxygen concentration measurements are amplified Therefore, while measurements at FiO2 ≤ 0.4 were accurate, FiO2 > 0.6 showed unacceptably high errors[36,41]. Meanwhile, high PEPP (such as a PEEP > 10 cm H2O) can alter alveolar gas exchange dynamics, affect stability of ventilatory circuit, and make the system prone to air leaks, leading to inaccuracies gas exchange measurements[42,43]. Secondly, error can arise from instability in the patient’s physiological state, such as variations in breathing patterns, metabolic rates, or ventilator settings. Breath-by-breath systems (e.g., E-sCOVX and Quark RMR) showed desynchronization between gas flow and concentration measurements in patients with irregular respiratory patterns, such as rapid shallow breathing or asynchronous ventilation. This led to significant variability in calculated VO2 and VCO2, and consequently, REE[40]. Critically ill patients with rapidly changing metabolic demands, such as those on vasopressor therapy or undergoing frequent feeding adjustments, can also have erratic VO2 and VCO2 values, which affect accuracy[44].

Thirdly, the suitability of IC in certain patient populations may be limited. Some ICU patients, such as those requiring Extracorporeal Membrane Oxygenation (ECMO) may be unsuitable for IC[45,46]. In ECMO patients, traditional IC cannot account for extracorporeal CO2 and O2 exchange, leading to inaccuracies[45]. Continuous veno-venous hemofiltration (CVVH) introduces non-intentional caloric exchanges through citrate, glucose, and lactate in dialysis fluids, which are not captured by standard IC[47]. However, modified IC techniques have an option to adjust for these factors. These will be discussed in a later section.

Feasibility and practical challenges

There are a few factors which limit its feasibility in clinical and bedside implementation. Firstly. IC requires specialized equipment, such as Deltatrac II or COSMED Quark RMR, and trained personnel for operation[40,42,48] which limits its widespread use. Secondly, time requirements include 30-60 minutes per session for setup and data collection[47] which may not be practical in dynamic ICU settings. Additionally, there is difficulty in ensuring steady-state conditions for measurement[40,49] need for frequent recalibration and artifact exclusion increase complexity[46,50] and lack of accessibility in resource-limited settings due to cost issues[42,44,51]. While new breath-by-breath devices were easier to integrate with existing ventilators and required less space compared to traditional IC devices, their measurements were prone to transient errors, reducing real-world reliability[36]. Other logistical barriers that limit its use include the additional tools and software for data interpretation as well as staff training in device operation and interpretation of complex IC data needed to assist clinicians in tailoring nutritional support[37,38,52].

Predictive equations

Benefits: Higher feasibility, easier bedside implementation: Equations are cost-effective and require no specialized equipment, making them widely used in ICUs[48,53]. No special equipment is needed, thus making it more feasible for resource-poor settings[38]. It similarly does not require the time needed for calibration, equipment maintenance and data collection that has been consistently reported as a limitation of traditional IC methods.

Limitations-inaccuracy: Predictive equations have been shown in some studies to have constantly underestimated REE by 20%-40% compared to IC[46,52,54], while other studies showed that they have overestimated REE compared to IC, with significant bias[35,42,44,50]. One study assessing 14 different predictive equations found that none of them accurately estimated REE within ± 10%[55]. Among the traditional predictive equations, the Penn-State equation has repeatedly been shown to have the higher accuracy predictive methods, but still demonstrated variability[53,55,56].

One reason for the inaccuracy of predictive equations is their inability to capture individual variability in metabolism or stress responses[35,44,47,52]. This is especially so for specific patient groups like mechanically ventilated and obese patients[46,50], where the Harris-Benedict equation significantly overestimated REE in patients with a body mass index (BMI) ≥ 30 kg/m², leading to potential overfeeding[57]. Secondly, they rely on static factors like weight and height, which may not reflect dynamic metabolic changes[42,44]. Furthermore, many of these traditional equations were developed for the western population, and it has been shown to be unreliable in mechanically ventilated Thai patients[55]. Overreliance on these equations can lead to underfeeding or overfeeding, leading to adverse outcomes[54].

Other alternatives and emerging technologies

Ventilator-derived carbon dioxide production with nutritional RQ expenditure-EEVCO2: An alternative way to determine EE in mechanically ventilated critically ill patients is to measure only carbon dioxide output (VCO2) which allows use of the Weir equation to estimate VO2[58], assuming a fixed RQ-the ratio of VCO2 to VO2. This approach is possible because most mechanical ventilators can continuously measure VCO2[48].

This approach offers a few benefits. Firstly, EE: VCO2 calculation was instantaneous once VCO2 data were available, whereas IC required longer setup and measurement times. It also leveraged on existing ventilator equipment, reducing need for dedicated IC devise and cost. The reliance on existing ventilator-integrated sensors makes equipment maintenance easier as well[31]. Stapel et al[48] managed to achieve better accuracy using ventilator measured VCO2 alone in ICU patients, determining RQ from the nutrition regimen to obtain more dynamic values, and obtained more accurate readings than the most frequently used predictive equations.

However, there are some limitations, the most glaring of which is its inaccuracy compared to the reference standard. Koekkoek et al[58] compared the use of EE: VCO2 from a Hamilton-S1 ventilator with Quark RMR IC device and found that EEVCO2 overestimated REE by 511 kcal/day. Its authors also found that including the food quotient did not improve the accuracy of EEVCO2, and instead found that predictive equations preformed marginally better than EEVCO2. Several reasons for its inaccuracy have been identified.

Firstly, their accuracy is affected by dependence on assumed RQ values, ventilator calibration and leaks. EE: VCO2 has also been found to be unreliable in patients with fluctuating acid-base balance or ventilation settings, as these affect the RQ, leading to erroneous REE if these changes are not accounted for[31]. Shifts in metabolic substrate utilization have resulted in errors of ± 327 kcal/day[53], with errors margins of 5%-30% observed[31]. Meanwhile, calibration errors in VCO2 sensors or air leaks in the ventilator circuit have been shown to cause inaccuracies in measured VCO2, with potential biases exceeding 100 kcal/day[48,53].

Overall, despite sometimes conflicting evidence regarding its accuracy, EE: VCO2 potentially offers a more cost-effective, less resource-intensive method to estimate REE while retaining sufficient accuracy, providing a practical alternative in settings without access to IC[31], but understanding of RQ variability and its impact on calculation of EE is needed among staff.

ECMO-adjusted IC

As mentioned before, CVVH affects the accuracy of REE measured by IC. While significant correction for CO2 removal is not needed, variability in citrate metabolism impacts metabolic rate[59]. Adjusted IC protocols, such as for VA ECMO patients or CVVH, have been developed and these have enhanced measurement precision by incorporating real-time adjustments for metabolic contributions from ECMO and hemofiltration circuits. These protocols accounted for non-intentional caloric exchanges, such as those from citrate and glucose, allowing for more accurate REE measurements.

Feasibility of these new technologies is affected by several factors. Adjusted protocols for ECMO or CVVH are applicable bedside but require highly trained staff[45,47]. Furthermore, they added complexity and time requirements due to the need for integrated data streams and specialized analysis as it requires recalibration with changes in CVVH settings and blood gas analysis for CO2 correction[59].

Development of new predictive equations

Takemae et al[60] implemented a novel prediction equation in septic patients in a Japanese ICU and demonstrated its superior accuracy compared to the Harris-Benedict, Ireton-Jones, and Schofield equations with smaller prediction error and bias, potentially allowing for more precise measurement in Asian populations. Tah et al[51] developed a new unified predictive equation incorporating dynamic variables that provided acceptable estimates across acute and late ICU phases. However, the main limitation to these new predictive equations lies in their limited generalizability and lack of validation in diverse ICU settings and populations.

CONCLUSION

IC remains the reference standard for accuracy in measuring EE, consistently outperforming predictive equations and emerging alternatives in critically ill patients. While it is unparalleled in accuracy, it is limited by cost, training requirements, and logistical challenges.

Predictive equations, despite their feasibility and low cost, lack precision and adaptability for dynamic ICU settings. As such, despite their practicality for bedside use, they frequently lead to under- or overfeeding.

Emerging technologies and alternatives such as EE: VCO2 and adjusted IC for ECMO or CVVH patients hold promise but require further validation and optimization. These could bridge existing gaps but are not yet ready for routine clinical application. Lack of standardization in protocols for these emerging methods hinders widespread use, and equipment costs and training demands limit adoption in low-resource settings[45].

Interpretation

The dynamic nature of metabolic changes in critically ill patients necessitates accurate, real-time methods like IC for effective nutritional planning. Routine use of IC in ICU settings could prevent malnutrition and overfeeding, improving recovery metrics. Predictive equations should be supplemented with clinical judgment or IC measurements where available. Investment in training and infrastructure for IC and emerging technologies will be crucial. Clinicians should weigh accuracy against feasibility when choosing EE measurement methods. Training and resource allocation can enhance the implementation of advanced tools like IC.

Strengths and limitations of this paper

Strengths include adherence to PRISMA guidelines and a comprehensive search strategy with inclusion of studies representing diverse methodologies and patient conditions. This paper also included a discussion on specific patient subgroups, such as COVID-19, ECMO, and CVVH patients, for a nuanced understanding of applicability.

There are some limitations. Variability in study designs and sample sizes limited comparability and generalizability. The retrospective nature of several studies reduced control over confounding variables, and there was a lack of external validation for emerging technologies and some IC adjustments.

Future directions

Some areas of future research include the development of portable, user-friendly calorimeters, conducting large-scale validation studies for emerging technologies and newer predictive equations, and leveraging on tools such as artificial intelligence (AI). AI is not new in healthcare or in the context of ICU, and AI algorithms such as reinforcement learning (RL) have been used in multiple situations. RL aims to optimize decision making by using interaction samples of an agent with its environment and the potentially delayed feedbacks[61]. Vent AI is a RL model that was shown to be able to suggest dynamically optimized mechanical ventilation regimen for critically-ill patients[62]. RL has also been applied to optimize dosing of propofol for sedation in ICU[63] and heparin[64]. Given the potential benefits of AI, further studies could focus on integrating AI with nutritional therapy in the ICU to optimise feeding.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Critical care medicine

Country of origin: Singapore

Peer-review report’s classification

Scientific Quality: Grade B, Grade B, Grade C

Novelty: Grade B, Grade C, Grade D

Creativity or Innovation: Grade B, Grade C, Grade D

Scientific Significance: Grade B, Grade B, Grade C

P-Reviewer: Ait Addi R; Anandan H; Jiang MY S-Editor: Qu XL L-Editor: A P-Editor: Zheng XM

References
1.  Moonen HPFX, Beckers KJH, van Zanten ARH. Energy expenditure and indirect calorimetry in critical illness and convalescence: current evidence and practical considerations. J Intensive Care. 2021;9:8.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 44]  [Cited by in RCA: 62]  [Article Influence: 15.5]  [Reference Citation Analysis (0)]
2.  Schlein KM, Coulter SP. Best practices for determining resting energy expenditure in critically ill adults. Nutr Clin Pract. 2014;29:44-55.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 56]  [Cited by in RCA: 57]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
3.  Cordoza M, Chan LN, Bridges E, Thompson H. Methods for Estimating Energy Expenditure in Critically Ill Adults. AACN Adv Crit Care. 2020;31:254-264.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 4]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
4.  Oshima T, Berger MM, De Waele E, Guttormsen AB, Heidegger CP, Hiesmayr M, Singer P, Wernerman J, Pichard C. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin Nutr. 2017;36:651-662.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 123]  [Cited by in RCA: 170]  [Article Influence: 18.9]  [Reference Citation Analysis (0)]
5.  Sabatino A, Theilla M, Hellerman M, Singer P, Maggiore U, Barbagallo M, Regolisti G, Fiaccadori E. Energy and Protein in Critically Ill Patients with AKI: A Prospective, Multicenter Observational Study Using Indirect Calorimetry and Protein Catabolic Rate. Nutrients. 2017;9:802.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 20]  [Cited by in RCA: 23]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
6.  Holzinger U, Brunner R, Losert H, Fuhrmann V, Herkner H, Madl C, Sterz F, Schneeweiß B. Resting energy expenditure and substrate oxidation rates correlate to temperature and outcome after cardiac arrest - a prospective observational cohort study. Crit Care. 2015;19:128.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 15]  [Cited by in RCA: 15]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
7.  Guttormsen AB, Pichard C. Determining energy requirements in the ICU. Curr Opin Clin Nutr Metab Care. 2014;17:171-176.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 40]  [Cited by in RCA: 42]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
8.  Rao M, Koenig E, Li S, Klebanov L, Marino L, Glass L, Finberg L. Direct calorimetry for the measurement of heat release in preterm infants: methods and applications. J Perinatol. 1995;15:375-381.  [PubMed]  [DOI]
9.  Haugen HA, Chan LN, Li F. Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract. 2007;22:377-388.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 224]  [Cited by in RCA: 226]  [Article Influence: 28.3]  [Reference Citation Analysis (0)]
10.  Mehta NM, Compher C; A. S.P.E.N. Board of Directors. A.S.P.E.N. Clinical Guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 2009;33:260-276.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 293]  [Cited by in RCA: 301]  [Article Influence: 18.8]  [Reference Citation Analysis (0)]
11.  Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, Ochoa JB, Napolitano L, Cresci G; American College of Critical Care Medicine;  A. S.P.E.N. Board of Directors. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Crit Care Med. 2009;37:1757-1761.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 359]  [Cited by in RCA: 272]  [Article Influence: 17.0]  [Reference Citation Analysis (0)]
12.  Brandi LS, Bertolini R, Santini L, Cavani S. Effects of ventilator resetting on indirect calorimetry measurement in the critically ill surgical patient. Crit Care Med. 1999;27:531-539.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 30]  [Cited by in RCA: 25]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
13.  Gupta RD, Ramachandran R, Venkatesan P, Anoop S, Joseph M, Thomas N. Indirect Calorimetry: From Bench to Bedside. Indian J Endocrinol Metab. 2017;21:594-599.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 38]  [Cited by in RCA: 47]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
14.  Johnson RK, Coward-mckenzie D. Energy Requirement Methodology. Nutr Prev Treat Dis. 2001;.  [PubMed]  [DOI]  [Full Text]
15.  Faisy C, Guerot E, Diehl JL, Labrousse J, Fagon JY. Assessment of resting energy expenditure in mechanically ventilated patients. Am J Clin Nutr. 2003;78:241-249.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 137]  [Cited by in RCA: 119]  [Article Influence: 5.4]  [Reference Citation Analysis (0)]
16.  Walker RN, Heuberger RA. Predictive equations for energy needs for the critically ill. Respir Care. 2009;54:509-521.  [PubMed]  [DOI]
17.  Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:241-247.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1493]  [Cited by in RCA: 1601]  [Article Influence: 45.7]  [Reference Citation Analysis (0)]
18.  Ireton-Jones CS, Turner WW Jr, Liepa GU, Baxter CR. Equations for the estimation of energy expenditures in patients with burns with special reference to ventilatory status. J Burn Care Rehabil. 1992;13:330-333.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 103]  [Cited by in RCA: 90]  [Article Influence: 2.7]  [Reference Citation Analysis (0)]
19.  Frankenfield D, Smith JS, Cooney RN. Validation of 2 approaches to predicting resting metabolic rate in critically ill patients. JPEN J Parenter Enteral Nutr. 2004;28:259-264.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 92]  [Cited by in RCA: 89]  [Article Influence: 9.9]  [Reference Citation Analysis (0)]
20.  Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, Hiesmayr M, Mayer K, Montejo JC, Pichard C, Preiser JC, van Zanten ARH, Oczkowski S, Szczeklik W, Bischoff SC. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38:48-79.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 989]  [Cited by in RCA: 1512]  [Article Influence: 216.0]  [Reference Citation Analysis (0)]
21.  Preiser JC, van Zanten AR, Berger MM, Biolo G, Casaer MP, Doig GS, Griffiths RD, Heyland DK, Hiesmayr M, Iapichino G, Laviano A, Pichard C, Singer P, Van den Berghe G, Wernerman J, Wischmeyer P, Vincent JL. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19:35.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 247]  [Cited by in RCA: 262]  [Article Influence: 26.2]  [Reference Citation Analysis (0)]
22.  Klein CJ, Stanek GS, Wiles CE 3rd. Overfeeding macronutrients to critically ill adults: metabolic complications. J Am Diet Assoc. 1998;98:795-806.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 255]  [Cited by in RCA: 214]  [Article Influence: 7.9]  [Reference Citation Analysis (0)]
23.  Kim H, Stotts NA, Froelicher ES, Engler MM, Porter C. Why patients in critical care do not receive adequate enteral nutrition? A review of the literature. J Crit Care. 2012;27:702-713.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 73]  [Cited by in RCA: 78]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
24.  Caccialanza R, Klersy C, Cereda E, Cameletti B, Bonoldi A, Bonardi C, Marinelli M, Dionigi P. Nutritional parameters associated with prolonged hospital stay among ambulatory adult patients. CMAJ. 2010;182:1843-1849.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 75]  [Cited by in RCA: 82]  [Article Influence: 5.5]  [Reference Citation Analysis (0)]
25.  Achamrah N, Oshima T, Genton L. Innovations in energy expenditure assessment. Curr Opin Clin Nutr Metab Care. 2018;21:321-328.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 9]  [Cited by in RCA: 7]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
26.  De Waele E, Spapen H, Honoré PM, Mattens S, Van Gorp V, Diltoer M, Huyghens L. Introducing a new generation indirect calorimeter for estimating energy requirements in adult intensive care unit patients: feasibility, practical considerations, and comparison with a mathematical equation. J Crit Care. 2013;28:884.e1-884.e6.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 32]  [Cited by in RCA: 36]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
27.  Singer P, Blaser AR, Berger MM, Calder PC, Casaer M, Hiesmayr M, Mayer K, Montejo-Gonzalez JC, Pichard C, Preiser JC, Szczeklik W, van Zanten ARH, Bischoff SC. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin Nutr. 2023;42:1671-1689.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 37]  [Cited by in RCA: 224]  [Article Influence: 112.0]  [Reference Citation Analysis (0)]
28.  Mehta NM, Smallwood CD, Joosten KF, Hulst JM, Tasker RC, Duggan CP. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement--a two-center study. Clin Nutr. 2015;34:151-155.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 41]  [Cited by in RCA: 52]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
29.  Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of Underprescription or Overprescription of Energy Needs in Critically Ill Mechanically Ventilated Adults as Determined by Indirect Calorimetry: A Systematic Literature Review. JPEN J Parenter Enteral Nutr. 2016;40:212-225.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 103]  [Cited by in RCA: 91]  [Article Influence: 10.1]  [Reference Citation Analysis (0)]
30.  Ridley EJ, Bailey M, Chapman MJ, Chapple LS, Deane AM, Gojanovic M, Higgins AM, Hodgson CL, King VL, Marshall AP, Miller EG, McGuinness SP, Parke RL, Paul E, Udy AA; Australian, New Zealand Intensive Care Society Clinical Trials Group. The impact of a tailored nutrition intervention delivered for the duration of hospitalisation on daily energy delivery for patients with critical illness (INTENT): a phase II randomised controlled trial. Crit Care. 2025;29:8.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
31.  Oshima T, Graf S, Heidegger CP, Genton L, Pugin J, Pichard C. Can calculation of energy expenditure based on CO(2) measurements replace indirect calorimetry? Crit Care. 2017;21:13.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 26]  [Cited by in RCA: 33]  [Article Influence: 4.1]  [Reference Citation Analysis (0)]
32.  Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 18665]  [Cited by in RCA: 17470]  [Article Influence: 1091.9]  [Reference Citation Analysis (1)]
33.  Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1-73.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2833]  [Cited by in RCA: 3274]  [Article Influence: 327.4]  [Reference Citation Analysis (0)]
34.  Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, Kleijnen J, Mallett S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann Intern Med. 2019;170:W1-W33.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 667]  [Cited by in RCA: 860]  [Article Influence: 143.3]  [Reference Citation Analysis (0)]
35.  Hickmann CE, Roeseler J, Castanares-Zapatero D, Herrera EI, Mongodin A, Laterre PF. Energy expenditure in the critically ill performing early physical therapy. Intensive Care Med. 2014;40:548-555.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 51]  [Cited by in RCA: 44]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
36.  Ferreruela M, Raurich JM, Llompart-Pou JA, Colomar A, Ayestarán I. Effect of FiO(2) in the measurement of VO(2) and VCO(2) using the E-COXV metabolic monitor. Med Intensiva. 2017;41:461-467.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 6]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
37.  Niederer LE, Miller H, Haines KL, Molinger J, Whittle J, MacLeod DB, McClave SA, Wischmeyer PE. Prolonged progressive hypermetabolism during COVID-19 hospitalization undetected by common predictive energy equations. Clin Nutr ESPEN. 2021;45:341-350.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 10]  [Cited by in RCA: 33]  [Article Influence: 8.3]  [Reference Citation Analysis (0)]
38.  Graham JK, Nasser ER, Jenkins D, Quillin-Mcewan M, Kelley C. Clinical metabolic monitoring to inform metabolic dysregulation in sepsis. J Adv Nurs. 2023;79:4842-4849.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 4]  [Reference Citation Analysis (0)]
39.  Tissot S, Delafosse B, Bertrand O, Bouffard Y, Viale JP, Annat G. Clinical validation of the Deltatrac monitoring system in mechanically ventilated patients. Intensive Care Med. 1995;21:149-153.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 86]  [Cited by in RCA: 83]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
40.  Rehal MS, Fiskaare E, Tjäder I, Norberg Å, Rooyackers O, Wernerman J. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care. 2016;20:54.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 28]  [Cited by in RCA: 32]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
41.  Slingerland-Boot H, Adhikari S, Mensink MR, van Zanten ARH. Comparison of the Beacon and Quark indirect calorimetry devices to measure resting energy expenditure in ventilated ICU patients. Clin Nutr ESPEN. 2022;48:370-377.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 4]  [Reference Citation Analysis (0)]
42.  Grguric L, Musillo L, DiGiacomo JC, Munnangi S. Throwing darts in ICU: how close are we in estimating energy requirements? Trauma Surg Acute Care Open. 2020;5:e000493.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
43.  Shinozaki K, Yu PJ, Zhou Q, Cassiere HA, John S, Rolston DM, Garg N, Li T, Johnson J, Saeki K, Goto T, Okuma Y, Miyara SJ, Hayashida K, Aoki T, Wong VK, Molmenti EP, Lampe JW, Becker LB. Continuous and repeat metabolic measurements compared between post-cardiothoracic surgery and critical care patients. BMC Pulm Med. 2023;23:390.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
44.  Sobhy E, Kader RA, Aboulfotouh A, Eshra M, Sayed M. Associations of measured resting energy expenditure with predictive equations, NUTRIC score, and patient outcomes. Egypt J Intern Med. 2021;33:35.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
45.  Tatucu-Babet OA, Diehl A, Kratzing C, Lambell K, Burrell A, Tierney A, Nyulasi I, Bailey M, Sheldrake J, Ridley EJ. Modified indirect calorimetry for patients on venoarterial extracorporeal membrane oxygenation: a pilot feasibility study. Eur J Clin Nutr. 2023;77:888-894.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 7]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
46.  Lindner M, Geisler C, Rembarz K, Hummitzsch L, Radke DI, Schulte DM, Müller MJ, Bosy-Westphal A, Elke G. Resting Energy Expenditure in the Critically Ill and Healthy Elderly-A Retrospective Matched Cohort Study. Nutrients. 2023;15:303.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 4]  [Reference Citation Analysis (0)]
47.  Jonckheer J, Van Hoorn A, Oshima T, De Waele E. Bioenergetic Balance of Continuous Venovenous Hemofiltration, a Retrospective Analysis. Nutrients. 2022;14:2112.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 2]  [Cited by in RCA: 6]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
48.  Stapel SN, de Grooth HJ, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, Oudemans-van Straaten HM. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 59]  [Cited by in RCA: 71]  [Article Influence: 7.1]  [Reference Citation Analysis (0)]
49.  Bateman RM, Sharpe MD, Jagger JE, Ellis CG, Solé-Violán J, López-Rodríguez M, Herrera-Ramos E, Ruíz-Hernández J, Borderías L, Horcajada J, González-Quevedo N, Rajas O, Briones M, Rodríguez de Castro F, Rodríguez Gallego C, Esen F, Orhun G, Ergin Ozcan P, Senturk E, Ugur Yilmaz C, Orhan N, Arican N, Kaya M, Kucukerden M, Giris M, Akcan U, Bilgic Gazioglu S, Tuzun E, Riff R, Naamani O, Douvdevani A, Takegawa R, Yoshida H, Hirose T, Yamamoto N, Hagiya H, Ojima M, Akeda Y, Tasaki O, Tomono K, Shimazu T, Ono S, Kubo T, Suda S, Ueno T, Ikeda T, Hirose T, Ogura H, Takahashi H, Ojima M, Kang J, Nakamura Y, Kojima T, Shimazu T, Ikeda T, Suda S, Izutani Y, Ueno T, Ono S, Taniguchi T, O M, Dinter C, Lotz J, Eilers B, Wissmann C, Lott R, Meili MM, Schuetz PS, Hawa H, Sharshir M, Aburageila M, Salahuddin N, Chantziara V, Georgiou S, Tsimogianni A, Alexandropoulos P, Vassi A, Lagiou F, Valta M, Micha G, Chinou E, Michaloudis G, Kodaira A, Ikeda T, Ono S, Ueno T, Suda S, Izutani Y, Imaizumi H, De la Torre-Prados MV, Garcia-De la Torre A, Enguix-Armada A, Puerto-Morlan A, Perez-Valero V, Garcia-Alcantara A, Bolton N, Dudziak J, Bonney S, Tridente A, Nee P, Nicolaes G, Wiewel M, Schultz M, Wildhagen K, Horn J, Schrijver R, Van der Poll T, Reutelingsperger C, Pillai S, Davies G, Mills G, Aubrey R, Morris K, Williams P, Evans P, Gayat EG, Struck J, Cariou A, Deye N, Guidet B, Jabert S, Launay J, Legrand M, Léone M, Resche-Rigon M, Vicaut E, Vieillard-Baron A, Mebazaa A, Arnold R, Capan M, Linder A, Akesson P, Popescu M, Tomescu D, Sprung CL, Calderon Morales R, Munteanu G, Orenbuch-Harroch E, Levin P, Kasdan H, Reiter A, Volker T, Himmel Y, Cohen Y, Meissonnier J, Girard L, Rebeaud F, Herrmann I, Delwarde B, Peronnet E, Cerrato E, Venet F, Lepape A, Rimmelé T, Monneret G, Textoris J, Beloborodova N, Moroz V, Osipov A, Bedova A, Sarshor Y, Pautova A, Sergeev A, Chernevskaya E, Odermatt J, Bolliger R, Hersberger L, Ottiger M, Christ-Crain M, Mueller B, Schuetz P, Sharma NK, Tashima AK, Brunialti MK, Machado FR, Assuncao M, Rigato O, Salomao R, Cajander SC, Rasmussen G, Tina E, Söderquist B, Källman J, Strålin K, Lange AL, Sundén-Cullberg JS, Magnuson AM, Hultgren OH, Davies G, Pillai S, Mills G, Aubrey R, Morris K, Williams P, Evans P, Pillai S, Davies G, Mills G, Aubrey R, Morris K, Williams P, Evans P, Pillai S, Davies G, Mills G, Aubrey R, Morris K, Williams P, Evans P, Van der Geest P, Mohseni M, Linssen J, De Jonge R, Duran S, Groeneveld J, Miller R III, Lopansri BK, McHugh LC, Seldon A, Burke JP, Johnston J, Reece-Anthony R, Bond A, Molokhia A, Mcgrath C, Nsutebu E, Bank Pedersen P, Pilsgaard Henriksen D, Mikkelsen S, Touborg Lassen A, Tincu R, Cobilinschi C, Tomescu D, Ghiorghiu Z, Macovei R, Wiewel MA, Harmon MB, Van Vught LA, Scicluna BP, Hoogendijk AJ, Horn J, Zwinderman AH, Cremer OL, Bonten MJ, Schultz MJ, Van der Poll T, Juffermans NP, Wiersinga WJ, Eren G, Tekdos Y, Dogan M, Acicbe O, Kaya E, Hergunsel O, Alsolamy S, Ghamdi G, Alswaidan L, Alharbi S, Alenezi F, Arabi Y, Heaton J, Boyce A, Nolan L, Johnston J, Dukoff-Gordon A, Dean A, Molokhia A, Mann Ben Yehudah T, Fleischmann C, Thomas-Rueddel D, Haas C, Dennler U, Reinhart K, Suntornlohanakul O, Khwannimit B, Breckenridge F, Puxty A, Szturz P, Folwarzcny P, Svancara J, Kula R, Sevcik P, Caneva L, Casazza A, Bellazzi E, Marra S, Pagani L, Vetere M, Vanzino R, Ciprandi D, Preda R, Boschi R, Carnevale L, Lopez V, Aguilar Arzapalo M, Barradas L, Escalante A, Gongora J, Cetina M, Adamik B, Jakubczyk D, Kübler A, Radford A, Lee T, Singer J, Boyd J, Fineberg D, Williams M, Russell J, Scarlatescu E, Tomescu D, Droc G, Arama S, Müller M, Straat M, Zeerleder SS, Juffermans NP, Fuchs CF, Scheer CS, Wauschkuhn SW, Vollmer MV, Meissner KM, Kuhn SK, Hahnenkamp KH, Rehberg SR, Gründling MG, Yamamoto N, Ojima M, Hamaguchi S, Hirose T, Akeda Y, Takegawa R, Tasaki O, Shimazu T, Tomono K, Gómez-Sánchez E, Heredia-Rodríguez M, Álvarez-Fuente E, Lorenzo-López M, Gómez-Pesquera E, Aragón-Camino M, Liu-Zhu P, Sánchez-López A, Hernández-Lozano A, Peláez-Jareño MT, Tamayo E, Thomas-Rüddel DO, Fleischmann C, Haas C, Dennler U, Reinhart K, Adora V, Kar A, Chakraborty A, Roy S, Bandyopadhyay A, Das M, Mann Ben Yehudah T, BenYehudah G, Salim M, Kumar N, Arabi L, Burger T, Lephart P, Toth-martin E, Valencia C, Hammami N, Blot S, Vincent JL, Lambert ML, Brunke J, Riemann T, Roschke I, Tincu R, Cobilinschi C, Tomescu D, Ghiorghiu Z, Macovei R, Nimitvilai S, Jintanapramote K, Jarupongprapa S, Adukauskiene D, Valanciene D, Bose G, Lostarakos V, Carr B, Khedher S, Maaoui A, Ezzamouri A, Salem M, Chen J, Cranendonk DR, Van Vught LA, Wiewel MA, Cremer OL, Horn J, Bonten MJ, Schultz MJ, Van der Poll T, Wiersinga WJ, Day M, Penrice G, Roy K, Robertson P, Godbole G, Jones B, Booth M, Donaldson L, Kawano Y, Ishikura H, Al-Dorzi H, Almutairi M, Alhamadi B, Crizaldo Toledo A, Khan R, Al Raiy B, Arabi Y, Talaie H, Van Oers JA, Harts A, Nieuwkoop E, Vos P, Boussarsar Y, Boutouta F, Kamoun S, Mezghani I, Koubaji S, Ben Souissi A, Riahi A, Mebazaa MS, Giamarellos-Bourboulis E, Tziolos N, Routsi C, Katsenos C, Tsangaris I, Pneumatikos I, Vlachogiannis G, Theodorou V, Prekates A, Antypa E, Koulouras V, Kapravelos N, Gogos C, Antoniadou E, Mandragos K, Armaganidis A, Robles Caballero AR, Civantos B, Figueira JC, López J, Silva-Pinto A, Ceia F, Sarmento A, Santos L, Almekhlafi G, Sakr Y, Al-Dorzi H, Khan R, Baharoon S, Aldawood A, Matroud A, Alchin J, Al Johani S, Balkhy H, Arabi Y, Alsolamy S, Yousif SY, Alotabi BO, Alsaawi AS, Ang J, Curran MD, Enoch D, Navapurkar V, Morris A, Sharvill R, Astin J, Heredia-Rodríguez M, Gómez-Sánchez E, Peláez-Jareño MT, Gómez-Pesquera E, Lorenzo-López M, Liu-Zhu P, Aragón-Camino M, Hernández-Lozano A, Sánchez-López A, Álvarez-Fuente E, Tamayo E, Patel J, Kruger C, O’Neal J, Rhodes H, Jancik J, François B, Laterre PF, Eggimann P, Torres A, Sánchez M, Dequin PF, Bassi GL, Chastre J, Jafri HS, Ben Romdhane M, Douira Z, Kamoun S, Bousselmi M, Ben Souissi A, Boussarsar Y, Riahi A, Mebazaa MS, Vakalos A, Avramidis V, Craven TH, Wojcik G, Kefala K, McCoubrey J, Reilly J, Paterson R, Inverarity D, Laurenson I, Walsh TS, Mongodi S, Bouhemad B, Orlando A, Stella A, Via G, Iotti G, Braschi A, Mojoli F, Haliloglu M, Bilgili B, Kasapoglu U, Sayan I, Süzer Aslan M, Yalcın A, Cinel I, Vakalos A, Avramidis V, Ellis HE, Bauchmuller K, Miller D, Temple A, Chastre J, François B, Torres A, Luyt CE, Sánchez M, Singer M, Jafri HS, Nassar Y, Ayad MS, Trifi A, Abdellatif S, Daly F, Nasri R, Ben Lakhal S, Bilgili B, Haliloglu M, Gul F, Cinel I, Kuzovlev A, Shabanov A, Polovnikov S, Moroz V, Kadrichu N, Dang T, Corkery K, Challoner P, Bassi GL, Aguilera E, Chiurazzi C, Travierso C, Motos A, Fernandez L, Amaro R, Senussi T, Idone F, Bobi J, Rigol M, Torres A, Hodiamont CJ, Juffermans NP, Janssen JM, Bouman CS, Mathôt RA, De Jong MD, Van Hest RM, Payne L, Fraser GL, Tudor B, Lahner M, Roth G, Krenn C, Talaie H, Jault P, Gabard J, Leclerc T, Jennes S, Que Y, Rousseau A, Ravat F, Al-Dorzi H, Eissa A, Al-Harbi S, Aldabbagh T, Khan R, Arabi Y, Trifi A, Abdellatif S, Daly F, Nasri R, Ben Lakhal S, Paramba F, Purayil N, Naushad V, Mohammad O, Negi V, Chandra P, Kleinsasser A, Witrz MR, Buchner-Doeven JF, Tuip-de Boer AM, Goslings JC, Juffermans NP, Van Hezel M, Straat M, Boing A, Van Bruggen R, Juffermans N, Markopoulou D, Venetsanou K, Kaldis V, Koutete D, Chroni D, Alamanos I, Koch L, Jancik J, Rhodes H, Walter E, Maekawa K, Hayakawa M, Kushimoto S, Shiraishi A, Kato H, Sasaki J, Ogura H, Matauoka T, Uejima T, Morimura N, Ishikura H, Hagiwara A, Takeda M, Tarabrin O, Shcherbakow S, Gavrychenko D, Mazurenko G, Ivanova V, Chystikov O, Plourde C, Lessard J, Chauny J, Daoust R, Shcherbakow S, Tarabrin O, Gavrychenko D, Mazurenko G, Chystikov O, Vakalos A, Avramidis V, Kropman L, In het Panhuis L, Konings J, Huskens D, Schurgers E, Roest M, De Laat B, Lance M, Durila M, Lukas P, Astraverkhava M, Jonas J, Budnik I, Shenkman B, Hayami H, Koide Y, Goto T, Iqbal R, Alhamdi Y, Venugopal N, Abrams S, Downey C, Toh CH, Welters ID, Bombay VB, Chauny JM, Daoust RD, Lessard JL, Marquis MM, Paquet JP, Siemens K, Sangaran D, Hunt BJ, Durward A, Nyman A, Murdoch IA, Tibby SM, Ampatzidou F, Moisidou D, Dalampini E, Nastou M, Vasilarou E, Kalaizi V, Chatzikostenoglou H, Drossos G, Spadaro S, Fogagnolo A, Fiore T, Schiavi A, Fontana V, Taccone F, Volta C, Chochliourou E, Volakli E, Violaki A, Samkinidou E, Evlavis G, Panagiotidou V, Sdougka M, Mothukuri R, Battle C, Guy K, Mills G, Evans P, Wijesuriya J, Keogh S, Docherty A, O’Donnell R, Brunskill S, Trivella M, Doree C, Holst L, Parker M, Gregersen M, Almeida J, Walsh T, Stanworth S, Moravcova S, Mansell J, Rogers A, Smith RA, Hamilton-Davies C, Omar A, Allam M, Bilala O, Kindawi A, Ewila H, Ampatzidou F, Moisidou D, Nastou M, Dalampini E, Malamas A, Vasilarou E, Drossos G, Ferreira G, Caldas J, Fukushima J, Osawa EA, Arita E, Camara L, Zeferino S, Jardim J, Gaioto F, Dallan L, Jatene FB, Kalil Filho R, Galas F, Hajjar LA, Mitaka C, Ohnuma T, Murayama T, Kunimoto F, Nagashima M, Takei T, Tomita M, Omar A, Mahmoud K, Hanoura S, Sudarsanan S, Sivadasan P, Othamn H, Shouman Y, Singh R, Al Khulaifi A, Mandel I, Mikheev S, Suhodolo I, Kiselev V, Svirko Y, Podoksenov Y, Jenkins SA, Griffin R, Tovar Doncel MS, Lima A, Aldecoa C, Ince C, Taha A, Shafie A, Mostafa M, Syed N, Hon H, Righetti F, Colombaroli E, Castellano G, Righetti F, Colombaroli E, Hravnak M, Chen LC, Dubrawski AD, Clermont GC, Pinsky MR, Gonzalez S, Macias D, Acosta J, Jimenez P, Loza A, Lesmes A, Lucena F, Leon C, Tovar Doncel MS, Ince C, Aldecoa C, Lima A, Bastide M, Richecoeur J, Frenoy E, Lemaire C, Sauneuf B, Tamion F, Nseir S, Du Cheyron D, Dupont H, Maizel J, Shaban M, Kolko R, Salahuddin N, Sharshir M, AbuRageila M, AlHussain A, Mercado P, Maizel J, Kontar L, Titeca D, Brazier F, Riviere A, Joris M, Soupison T, De Cagny B, Slama M, Wagner J, Körner A, Kubik M, Kluge S, Reuter D, Saugel B, Colombaroli E, Righetti F, Castellano G, Tran T, De Bels D, Cudia A, Strachinaru M, Ghottignies P, Devriendt J, Pierrakos C, Martínez González Ó, Blancas R, Luján J, Ballesteros D, Martínez Díaz C, Núñez A, Martín Parra C, López Matamala B, Alonso Fernández M, Chana M, Huber W, Eckmann M, Elkmann F, Gruber A, Klein I, Schmid RM, Lahmer T, Moller PW, Sondergaard S, Jakob SM, Takala J, Berger D, Bastoni D, Aya H, Toscani L, Pigozzi L, Rhodes A, Cecconi M, Ostrowska C, Aya H, Abbas A, Mellinghoff J, Ryan C, Dawson D, Rhodes A, Cecconi M, Cronhjort M, Wall O, Nyberg E, Zeng R, Svensen C, Mårtensson J, Joelsson-Alm E, Aguilar Arzapalo M, Barradas L, Lopez V, Cetina M, Parenti N, Palazzi C, Amidei LA, Borrelli FB, Campanale SC, Tagliazucchi FT, Sedoni GS, Lucchesi DL, Carella EC, Luciani AL, Mackovic M, Maric N, Bakula M, Aya H, Rhodes A, Grounds RM, Fletcher N, Cecconi M, Avard B, Zhang P, Mezidi M, Charbit J, Ould-Chikh M, Deras P, Maury C, Martinez O, Capdevila X, Hou P, Linde-Zwirble WZ, Douglas ID, Shapiro NS, Ben Souissi A, Mezghani I, Ben Aicha Y, Kamoun S, Laribi B, Jeribi B, Riahi A, Mebazaa MS, Pereira C, Marinho R, Antunes R, Marinho A, Crivits M, Raes M, Decruyenaere J, Hoste E, Bagin V, Rudnov V, Savitsky A, Astafyeva M, Korobko I, Vein V, Kampmeier T, Arnemann P, Hessler M, Wald A, Bockbreder K, Morelli A, Van Aken H, Rehberg S, Ertmer C, Arnemann P, Hessler M, Kampmeier T, Rehberg S, Van Aken H, Ince C, Ertmer C, Reddy S, Bailey M, Beasley R, Bellomo R, Mackle D, Psirides A, Young P, Reddy S, Bailey M, Beasley R, Bellomo R, Mackle D, Young P, Venkatesh H, Ramachandran S, Basu A, Nair H, Egan S, Bates J, Oliveira S, Rangel Neto NR, Reis FQ, Lee CP, Lin XL, Choong C, Eu KM, Sim WY, Tee KS, Pau J, Abisheganaden J, Maas K, De Geus H, Lafuente E, Marinho R, Moura J, Antunes R, Marinho A, Doris TE, Monkhouse D, Shipley T, Kardasz S, Gonzalez I, Stads S, Groeneveld AJ, Elsayed I, Ward N, Tridente A, Raithatha A, Steuber A, Pelletier C, Schroeder S, Michael E, Slowinski T, Kindgen-Milles D, Ghabina S, Turani F, Belli A, Busatti S, Barettin G, Candidi F, Gargano F, Barchetta R, Falco M, Demirkiran O, Kosuk M, Bozbay S, Weber V, Hartmann J, Harm S, Linsberger I, Eichhorn T, Valicek G, Miestinger G, Hoermann C, Faenza S, Ricci D, Mancini E, Gemelli C, Cuoghi A, Magnani S, Atti M, Laddomada T, Doronzio A, Balicco B, Gruda MC, O’Sullivan P, Dan VP, Guliashvili T, Scheirer A, Golobish TD, Capponi VJ, Chan PP, Kogelmann K, Drüner M, Jarczak D, Turani F, Belli AB, Martni SM, Cotticelli VC, Mounajergi F, Barchetta R, Morimoto S, Ishikura H, Hussain I, Salahuddin N, Nadeem A, Ghorab K, Maghrabi K, Kloesel SK, Goldfuss C, Stieglitz A, Stieglitz AS, Krstevska L, Albuszies G, Aguilar Arzapalo M, Barradas L, Lopez V, Escalante A, Jimmy G, Cetina M, Izawa J, Iwami T, Uchino S, Takinami M, Kitamura T, Kawamura T, Powell-Tuck JG, Crichton S, Raimundo M, Camporota L, Wyncoll D, Ostermann M, Hana A, De Geus HR, De Geus HR, Hana A, Aydogdu M, Boyaci N, Yuksel S, Gursel G, Cayci Sivri AB, Meza-Márquez J, Nava-López J, Carrillo-Esper R, Dardashti A, Grubb A, Maizel J, Wetzstein M, Titeca D, Kontar L, Brazier F, De Cagny B, Riviere A, Soupison T, Joris M, Slama M, Peters E, Njimi H, Pickkers P, Vincent JL, Waraich M, Doyle J, Samuels T, Forni L, Desai N, Baumber R, Gunning P, Sell A, Lin S, Torrence H, O’Dwyer M, Kirwan C, Prowle J, Kim T, O’Connor ME, Hewson RW, Kirwan CJ, Pearse RM, Prowle J, Hanoura S, Omar A, Othamn H, Sudarsanan S, Allam M, Maksoud M, Singh R, Al Khulaifi A, O’Connor ME, Hewson RW, Kirwan CJ, Pearse RM, Prowle J, Uzundere O, Memis D, Ýnal M, Gultekin A, Turan N, Aydin MA, Basar H, Sencan I, Kapuagasi A, Ozturk M, Uzundurukan Z, Gokmen D, Ozcan A, Kaymak C, Artemenko VA, Budnyuk A, Pugh R, Bhandari S, Mauri T, Turrini C, Langer T, Taccone P, Volta CA, Marenghi C, Gattinoni L, Pesenti A, Sweeney L, O’Sullivan A, Kelly P, Mukeria E, MacLoughlin R, Pfeffer M, Thomas JT, Bregman GB, Karp GK, Kishinevsky EK, Stavi DS, Adi NA, Poropat T, Knafelj R, Llopart E, Batlle M, De Haro C, Mesquida J, Artigas A, Pavlovic D, Lewerentz L, Spassov A, Schneider R, De Smet S, De Raedt S, Derom E, Depuydt P, Oeyen S, Benoit D, Decruyenaere J, Gobatto A, Besen B, Tierno P, Melro L, Mendes P, Cadamuro F, Park M, Malbouisson LM, Civantos BC, Lopez JL, Robles A, Figueira J, Yus S, Garcia A, Oglinda A, Ciobanu G, Oglinda C, Schirca L, Sertinean T, Lupu V, Kelly P, O’Sullivan A, Sweeney L, MacLoughlin R, O’Sullivan A, Kelly P, Sweeney L, Mukeria E, Wolny M, MacLoughlin R, Pagano A, Numis F, Visone G, Saldamarco L, Russo T, Porta G, Paladino F, Bell C, Liu J, Debacker J, Lee C, Tamberg E, Campbell V, Mehta S, Silva-Pinto A, Sarmento A, Santos L, Kara Ý, Yýldýrým F, Zerman A, Güllü Z, Boyacý N, Basarýk Aydogan B, Gaygýsýz Ü, Gönderen K, Arýk G, Turkoglu M, Aydogdu M, Aygencel G, Ülger Z, Gursel G, Boyacý N, Isýkdogan Z, Özdedeoglu Ö, Güllü Z, Badoglu M, Gaygýsýz U, Aydogdu M, Gursel G, Kongpolprom N, Sittipunt C, Eden A, Kokhanovsky Y, Bursztein – De Myttenaere S, Pizov R, Neilans L, MacIntyre N, Radosevich M, Wanta B, Weber V, Meyer T, Smischney N, Brown D, Diedrich D, Fuller A, McLindon P, Sim K, Shoaeir M, Noeam K, Mahrous A, Matsa R, Ali A, Dridi C, Koubaji S, Kamoun S, Haddad F, Ben Souissi A, Laribi B, Riahi A, Mebazaa MS, Pérez-Calatayud A, Carrillo-Esper R, Zepeda-Mendoza A, Diaz-Carrillo M, Arch-Tirado E, Carbognin S, Pelacani L, Zannoni F, Agnoli A, Gagliardi G, Cho R, Adams A, Lunos S, Ambur S, Shapiro R, Prekker M, Thijssen M, Janssen L, Foudraine N, Voscopoulos CJ, Freeman J, Voscopoulos CJ, Freeman J, George E, Voscopoulos CJ, Eversole D, Freeman J, George E, Muttini S, Bigi R, Villani G, Patroniti N, Williams G, Voscopoulos CJ, Freeman J, George E, Waldmann A, Böhm S, Windisch W, Strassmann S, Karagiannidis C, Waldmann A, Böhm S, Windisch W, Strassmann S, Karagiannidis C, Karagiannidis CK, Waldmann AW, Böhm SB, Strassmann S, Windisch WW, Persson P, Lundin S, Stenqvist O, Porta G, Numis F, Serra CS, Pagano AP, Masarone MM, Rinaldi LR, Amelia AA, Fascione MF, Adinolfi LA, Ruggiero ER, Asota F, O’Rourke K, Ranjan S, Morgan P, DeBacker JW, Tamberg E, O’Neill L, Munshi L, Burry L, Fan E, Mehta S, Poo S, Mahendran K, Fowles J, Gerrard C, Vuylsteke A, Loveridge R, Chaddock C, Patel S, Kakar V, Willars C, Hurst T, Park C, Best T, Vercueil A, Auzinger G, Borgman A, Proudfoot AG, Grins E, Emiley KE, Schuitema J, Fitch SJ, Marco G, Sturgill J, Dickinson MG, Strueber M, Khaghani A, Wilton P, Jovinge SM, Sampson C, Harris-Fox S, Cove ME, Vu LH, Sen A, Federspiel WJ, Kellum JA, Mazo Torre C, Riera J, Ramirez S, Borgatta B, Lagunes L, Rello J, Kuzovlev AK, Moroz V, Goloubev A, Polovnikov S, Nenchuk S, Karavana V, Glynos C, Asimakos A, Pappas K, Vrettou C, Magkou M, Ischaki E, Stathopoulos G, Zakynthinos S, Spadaro S, Kozhevnikova I, Dalla Corte F, Grasso S, Casolari P, Caramori G, Volta C, Andrianjafiarinoa T, Randriamandrato T, Rajaonera T, El-Dash S, Costa ELV, Tucci MR, Leleu F, Kontar L, De Cagny B, Brazier F, Titeca D, Bacari-Risal G, Maizel J, Amato M, Slama M, Mercado P, Maizel J, Kontar L, Titeca D, Brazier F, Riviere A, Joris M, Soupison T, De Cagny B, El Dash S, Slama M, Remmington, Fischer A, Squire S, Boichat M, Honzawa H, Yasuda H, Adati T, Suzaki S, Horibe M, Sasaki M, Sanui M, Marinho R, Daniel J, Miranda H, Marinho A, Milinis K, Cooper M, Williams GR, McCarron E, Simants S, Patanwala I, Welters I, Su Y, Fernández Villanueva J, Fernández Garda R, López Lago A, Rodríguez Ruíz E, Hernández Vaquero R, Tomé Martínez de Rituerto S, Varo Pérez E, Lefel N, Schaap F, Bergmans D, Olde Damink S, Van de Poll M, Tizard K, Lister C, Poole L, Ringaitiene D, Gineityte D, Vicka V, Norkiene I, Sipylaite J, O’Loughlin A, Maraj V, Dowling J, Velasco MB, Dalcomune DM, Dias EB, Fernandes SL, Oshima T, Graf S, Heidegger C, Genton L, Karsegard V, Dupertuis Y, Pichard C, Friedli N, Stanga Z, Mueller B, Schuetz P, Vandersteen L, Stessel B, Evers S, Van Assche A, Jamaer L, Dubois J, Marinho R, Castro H, Moura J, Valente J, Martins P, Casteloes P, Magalhaes C, Cabral S, Santos M, Oliveira B, Salgueiro A, Marinho A, Marinho R, Santos M, Lafuente E, Castro H, Cabral S, Moura J, Martins P, Oliveira B, Salgueiro A, Duarte S, Castro S, Melo M, Casteloes P, Marinho A, Gray S, Maipang K, Bhurayanontachai R, Grädel LG, Schütz P, Langlois P, Manzanares W, Tincu R, Cobilinschi C, Tomescu D, Ghiorghiu Z, Macovei R, Manzanares W, Langlois P, Lemieux M, Elke G, Bloos F, Reinhart K, Heyland D, Langlois P, Lemieux M, Aramendi I, Heyland D, Manzanares W, Su Y, Marinho R, Babo N, Marinho A, Hoshino M, Haraguchi Y, Kajiwara S, Mitsuhashi T, Tsubata T, Aida M, Rattanapraphat T, Bhurayanontachai R, Kongkamol C, Khwannimit B, Marinho R, Santos M, Castro H, Lafuente E, Salgueiro A, Cabral S, Martins P, Moura J, Oliveira B, Melo M, Xavier B, Valente J, Magalhaes C, Casteloes P, Marinho A, Moisidou D, Ampatzidou F, Koutsogiannidis C, Moschopoulou M, Drossos G, Taskin G, Çakir M, Güler AK, Taskin A, Öcal N, Özer S, Yamanel L, Wong JM, Fitton C, Anwar S, Stacey S, Aggou M, Fyntanidou B, Patsatzakis S, Oloktsidou E, Lolakos K, Papapostolou E, Grosomanidis V, Suda S, Ikeda T, Ono S, Ueno T, Izutani Y, Gaudry S, Desailly V, Pasquier P, Brun PB, Tesnieres AT, Ricard JD, Dreyfuss D, Mignon A, White JC, Molokhia A, Dean A, Stilwell A, Friedlaender G, Peters M, Stipulante S, Delfosse A, Donneau AF, Ghuysen A, Feldmann C, Freitag D, Dersch W, Irqsusi M, Eschbach D, Steinfeldt T, Wulf H, Wiesmann T, Kongpolprom N, Cholkraisuwat J, Beitland S, Nakstad E, Stær-Jensen H, Drægni T, Andersen G, Jacobsen D, Brunborg C, Waldum-Grevbo B, Sunde K, Hoyland K, Pandit D, Hayakawa K, Oloktsidou E, Kotzampassi K, Fyntanidou B, Patsatzakis S, Loukipoudi L, Doumaki E, Grosomanidis V, Yasuda H, Admiraal MM, Van Assen M, Van Putten MJ, Tjepkema-Cloostermans M, Van Rootselaar AF, Horn J, Ragusa F, Marudi A, Baroni S, Gaspari A, Bertellini E, Taha A, Abdullah T, Abdel Monem S, Alcorn S, McNeill S, Russell S, Eertmans W, Genbrugge C, Meex I, Dens J, Jans F, De Deyne C, Cholkraisuwat J, Kongpolprom N, Avard B, Burns R, Patarchi A, Spina T, Tanaka H, Otani N, Ode S, Ishimatsu S, Cho J, Moon JB, Park CW, Ohk TG, Shin MC, Won MH, Dakova S, Ramsheva Z, Ramshev K, Cho J, Moon JB, Park CW, Ohk TG, Shin MC, Cho J, Moon JB, Park CW, Ohk TG, Shin MC, Marudi A, Baroni S, Gaspari A, Bertellini E, Orhun G, Senturk E, Ozcan PE, Sencer S, Ulusoy C, Tuzun E, Esen F, Tincu R, Cobilinschi C, Tomescu D, Ghiorghiu Z, Macovei R, Van Assen M, Admiraal MM, Van Putten MJ, Tjepkema-Cloostermans M, Van Rootselaar AF, Horn J, Fallenius M, Skrifvars MB, Reinikainen M, Bendel S, Raj R, Abu-Habsa M, Hymers C, Borowska A, Sivadhas H, Sahiba S, Perkins S, Rubio J, Rubio JA, Sierra R, English S, Chasse M, Turgeon A, Lauzier F, Griesdale D, Garland A, Fergusson D, Zarychanski R, Tinmouth A, Van Walraven C, Montroy K, Ziegler J, Dupont Chouinard R, Carignan R, Dhaliwal A, Lum C, Sinclair J, Pagliarello G, McIntyre L, English S, Chasse M, Turgeon A, Lauzier F, Griesdale D, Garland A, Fergusson D, Zarychanski R, Tinmouth A, Van Walraven C, Montroy K, Ziegler J, Dupont Chouinard R, Carignan R, Dhaliwal A, Lum C, Sinclair J, Pagliarello G, McIntyre L, Groza T, Moreau N, Castanares-Zapatero D, Hantson P, Carbonara M, Ortolano F, Zoerle T, Magnoni S, Pifferi S, Conte V, Stocchetti N, Carteron L, Suys T, Patet C, Quintard H, Oddo M, Rubio JA, Rubio J, Sierra R, Spatenkova V, Pokorna E, Suchomel P, Ebert N, Jancik J, Rhodes H, Bylinski T, Hawthorne C, Shaw M, Piper I, Kinsella J, Kink AK, Rätsep IR, Boutin A, Moore L, Chasse M, Zarychanski R, Lauzier F, English S, McIntyre L, Lacroix J, Griesdale D, Lessard-Bonaventure P, Turgeon AF, Boutin A, Moore L, Green R, Lessard-Bonaventure P, Erdogan M, Butler M, Lauzier F, Chasse M, English S, McIntyre L, Zarychanski R, Lacroix J, Griesdale D, Desjardins P, Fergusson DA, Turgeon AF, Goncalves B, Vidal B, Valdez C, Rodrigues AC, Miguez L, Moralez G, Hong T, Kutz A, Hausfater P, Amin D, Struja T, Haubitz S, Huber A, Mueller B, Schuetz P, Brown T, Collinson J, Pritchett C, Slade T, Le Guen M, Hellings S, Ramsaran R, Alsheikhly A, Abe T, Kanapeckaite L, Abu-Habsa M, Bahl R, Russell MQ, Real KJ, Abu-Habsa M, Lyon RM, Oveland NP, Penketh J, Mcdonald M, Kelly F, Alfafi M, Alsolamy S, Almutairi W, Alotaibi B, Van den Berg AE, Schriel Y, Dawson L, Meynaar IA, Talaie H, Silva D, Fernandes S, Gouveia J, Santos Silva J, Foley J, Kaskovagheorgescu A, Evoy D, Cronin J, Ryan J, Huck M, Hoffmann C, Renner J, Laitselart P, Donat N, Cirodde A, Schaal JV, Masson Y, Nau A, Leclerc T, Howarth O, Davenport K, Jeanrenaud P, Raftery S, MacTavish P, Devine H, McPeake J, Daniel M, Kinsella J, Quasim T, Alrabiee S, Alrashid A, Alsolamy S, Gundogan O, Bor C, Akýn Korhan E, Demirag K, Uyar M, Frame F, Ashton C, Bergstrom Niska L, Dilokpattanamongkol P, Suansanae T, Suthisisang C, Morakul S, Karnjanarachata C, Tangsujaritvijit V, Mahmood S, Al Thani H, Almenyar A, Vakalos A, Avramidis V, Sharvill R, Penketh J, Morton SE, Chiew YS, Pretty C, Chase JG, Shaw GM, Knafelj R, Kordis P, Patel S, Grover V, Kuchyn I, Bielka K, Aidoni Z, Grosomanidis V, Kotzampassi K, Stavrou G, Fyntanidou B, Patsatzakis S, Skourtis C, Lee SD, Williams K, Weltes ID, Berhane S, Arrowsmith C, Peters C, Robert S, Caldas J, Panerai RB, Robinson TG, Camara L, Ferreira G, Borg-Seng-Shu E, De Lima Oliveira M, Mian NC, Santos L, Nogueira R, Zeferino SP, Jacobsen Teixeira M, Galas F, Hajjar LA, Killeen P, McPhail M, Bernal W, Maggs J, Wendon J, Hughes T, Taniguchi LU, Siqueira EM, Vieira Jr JM, Azevedo LC, Ahmad AN, Abu-Habsa M, Bahl R, Helme E, Hadfield S, Loveridge R, Shak J, Senver C, Howard-Griffin R, Wacharasint P, Fuengfoo P, Sukcharoen N, Rangsin R, Sbiti-Rohr D, Schuetz P, Na H, Song S, Lee S, Jeong E, Lee K, Cooper M, Milinis K, Williams G, McCarron E, Simants S, Patanwala I, Welters ID, Zoumpelouli E, Volakli EA, Chrysohoidou V, Georgiou S, Charisopoulou K, Kotzapanagiotou E, Panagiotidou V, Manavidou K, Stathi Z, Sdougka M, Salahuddin N, AlGhamdi B, Marashly Q, Zaza K, Sharshir M, Khurshid M, Ali Z, Malgapo M, Jamil M, Shafquat A, Shoukri M, Hijazi M, Abe T, Uchino S, Takinami M, Rangel Neto NR, Oliveira S, Reis FQ, Rocha FA, Moralez G, Ebecken K, Rabello LS, Lima MF, Hatum R, De Marco FV, Alves A, Pinto JE, Godoy M, Brasil PE, Bozza FA, Salluh JI, Soares M, Krinsley J, Kang G, Perry J, Hines H, Wilkinson KM, Tordoff C, Sloan B, Bellamy MC, Moreira E, Verga F, Barbato M, Burghi G, Soares M, Silva UV, Azevedo LC, Torelly AP, Kahn JM, Angus DC, Knibel MF, Brasil PE, Bozza FA, Salluh JI, Velasco MB, Dalcomune DM, Marshall R, Gilpin T, Tridente A, Raithatha A, Mota D, Loureiro B, Dias J, Afonso O, Coelho F, Martins A, Faria F, Al-Dorzi H, Al Orainni H, AlEid F, Tlaygeh H, Itani A, Hejazi A, Arabi Y, Gaudry S, Messika J, Ricard JD, Guillo S, Pasquet B, Dubief E, Dreyfuss D, Tubach F, Battle C, James K, Temblett P, Davies L, Battle C, Lynch C, Pereira S, Cavaco S, Fernandes J, Moreira I, Almeida E, Seabra Pereira F, Malheiro M, Cardoso F, Aragão I, Cardoso T, Fister M, Knafelj R, Muraray Govind P, Brahmananda Reddy N, Pratheema R, Arul ED, Devachandran J, Velasco MB, Dalcomune DM, Knafelj R, Fister M, Chin-Yee N, D’Egidio G, Thavorn K, Heyland D, Kyeremanteng K, Murchison AG, Swalwell K, Mandeville J, Stott D, Guerreiro I, Devine H, MacTavish P, McPeake J, Quasim T, Kinsella J, Daniel M, Goossens C, Marques MB, Derde S, Vander Perre S, Dufour T, Thiessen SE, Güiza F, Janssens T, Hermans G, Vanhorebeek I, De Bock K, Van den Berghe G, Langouche L, Devine H, MacTavish P, Quasim T, Kinsella J, Daniel M, McPeake J, Miles B, Madden S, Devine H, Weiler M, Marques P, Rodrigues C, Boeira M, Brenner K, Leães C, Machado A, Townsend R, Andrade J, MacTavish P, McPeake J, Devine H, Kinsella J, Daniel M, Kishore R, Fenlon C, Quasim T, Fiks T, Ruijter A, Te Raa M, Spronk P, Chiew YS, Docherty P, Dickson J, Moltchanova E, Scarrot C, Pretty C, Shaw GM, Chase JG, Hall T, Ngu WC, Jack JM, Morgan P, Avard B, Pavli A, Gee X, Bor C, Akin Korhan E, Demirag K, Uyar M, Shirazy M, Fayed A, Gupta S, Kaushal A, Dewan S, Varma A, Ghosh E, Yang L, Eshelman L, Lord B, Carlson E, Helme E, Broderick R, Hadfield S, Loveridge R, Ramos J, Forte D, Yang F, Hou P, Dudziak J, Feeney J, Wilkinson K, Bauchmuller K, Shuker K, Faulds M, Raithatha A, Bryden D, England L, Bolton N, Tridente A, Bauchmuller K, Shuker K, Tridente A, Faulds M, Matheson A, Gaynor J, Bryden D; S South Yorkshire Hospitals Research Collaboration, Ramos J, Peroni B, Daglius-Dias R, Miranda L, Cohen C, Carvalho C, Velasco I, Forte D, Kelly JM, Neill A, Rubenfeld G, Masson N, Min A, Boezeman E, Hofhuis J, Hovingh A, De Vries R, Spronk P, Cabral-Campello G, Aragão I, Cardoso T, Van Mol M, Nijkamp M, Kompanje E, Ostrowski P, Omar A, Kiss K, Köves B, Csernus V, Molnár Z, Hoydonckx Y, Vanwing S, Stessel B, Van Assche A, Jamaer L, Dubois J, Medo V, Galvez R, Miranda JP, Stone C, Wigmore T, Arunan Y, Wheeler A, Bauchmuller K, Bryden D, Wong Y, Poi C, Gu C, Molmy P, Van Grunderbeeck N, Nigeon O, Lemyze M, Thevenin D, Mallat J, Ramos J, Correa M, Carvalho RT, Forte D, Fernandez A, McBride C, Koonthalloor E, Walsh C, Webber A, Ashe M, Smith K, Jeanrenaud P, Marudi A, Baroni S, Ragusa F, Bertellini E, Volakli EA, Chochliourou E, Dimitriadou M, Violaki A, Mantzafleri P, Samkinidou E, Vrani O, Arbouti A, Varsami T, Sdougka M, Bollen JA, Van Smaalen TC, De Jongh WC, Ten Hoopen MM, Ysebaert D, Van Heurn LW, Van Mook WN, Sim K, Fuller A, Roze des Ordons A, Couillard P, Doig C, Van Keer RV, Deschepper RD, Francke AF, Huyghens LH, Bilsen JB, Nyamaizi B, Dalrymple C, Molokhia A, Dobru A, Marrinan E, Ankuli A, Molokhia A, McPeake J, Struthers R, Crawford R, Devine H, Mactavish P, Quasim T, Morelli P, Degiovanangelo M, Lemos F, MArtinez V, Verga F, Cabrera J, Burghi G, Rutten A, Van Ieperen S, De Geer S, Van Vugt M, Der Kinderen E, Giannini A, Miccinesi G, Marchesi T, Prandi E. 36th International Symposium on Intensive Care and Emergency Medicine : Brussels, Belgium. 15-18 March 2016. Crit Care. 2016;20:94.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 261]  [Cited by in RCA: 296]  [Article Influence: 32.9]  [Reference Citation Analysis (0)]
50.  Saseedharan S, Chada RR, Kadam V, Chiluka A, Nagalla B. Energy expenditure in COVID-19 mechanically ventilated patients: A comparison of three methods of energy estimation. JPEN J Parenter Enteral Nutr. 2022;46:1875-1882.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4]  [Cited by in RCA: 5]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
51.  Tah PC, Poh BK, Kee CC, Lee ZY, Hakumat-Rai VR, Mat Nor MB, Kamarul Zaman M, Majid HA, Hasan MS. Do we need different predictive equations for the acute and late phases of critical illness? A prospective observational study with repeated indirect calorimetry measurements. Eur J Clin Nutr. 2022;76:527-534.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 6]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
52.  Murray G, Thomas S, Dunlea T, Jimenez AN, Eiferman D, Nahikian-Nelms M, Roberts KM. Comparison of predictive equations and indirect calorimetry in critical care: Does the accuracy differ by body mass index classification? Nutr Clin Pract. 2023;38:1124-1132.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
53.  Kagan I, Zusman O, Bendavid I, Theilla M, Cohen J, Singer P. Validation of carbon dioxide production (VCO(2)) as a tool to calculate resting energy expenditure (REE) in mechanically ventilated critically ill patients: a retrospective observational study. Crit Care. 2018;22:186.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 26]  [Cited by in RCA: 24]  [Article Influence: 3.4]  [Reference Citation Analysis (0)]
54.  Vest MT, Newell E, Shapero M, McGraw P, Jurkovitz C, Lennon SL, Trabulsi J. Energy balance in obese, mechanically ventilated intensive care unit patients. Nutrition. 2019;66:48-53.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 6]  [Cited by in RCA: 9]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
55.  Kongpolprom N. Accuracy of predictive equations for resting energy expenditure estimation in mechanically ventilated Thai patients. Asian Biomed (Res Rev News). 2023;17:30-38.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
56.  Rousseau AF, Fadeur M, Colson C, Misset B. Measured Energy Expenditure Using Indirect Calorimetry in Post-Intensive Care Unit Hospitalized Survivors: A Comparison with Predictive Equations. Nutrients. 2022;14.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 2]  [Cited by in RCA: 13]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
57.  Liew C, Wong KW, Ng PS, Lau YH. Energy expenditure measured by indirect calorimetry in a neuroscience intensive care unit: a retrospective observational study. S Afr J Clin Nutr. 2024;37:180-183.  [PubMed]  [DOI]  [Full Text]
58.  Koekkoek WAC, Xiaochen G, van Dijk D, van Zanten ARH. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO(2) derived method in critically ill patients: The DREAM-VCO(2) prospective comparative study. Clin Nutr ESPEN. 2020;39:137-143.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 9]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
59.  Jonckheer J, Demol J, Lanckmans K, Malbrain MLNG, Spapen H, De Waele E. MECCIAS trial: Metabolic consequences of continuous veno-venous hemofiltration on indirect calorimetry. Clin Nutr. 2020;39:3797-3803.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 13]  [Cited by in RCA: 31]  [Article Influence: 6.2]  [Reference Citation Analysis (0)]
60.  Takemae A, Takazawa T, Kamiyama J, Kanamoto M, Tobe M, Hinohara H, Kunimoto F, Saito S. A novel prediction equation of resting energy expenditure for Japanese septic patients. J Crit Care. 2020;56:236-242.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 4]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
61.  Yu C, Liu J, Nemati S, Yin G. Reinforcement Learning in Healthcare: A Survey. ACM Comput Surv. 2023;55:1-36.  [PubMed]  [DOI]  [Full Text]
62.  Peine A, Hallawa A, Bickenbach J, Dartmann G, Fazlic LB, Schmeink A, Ascheid G, Thiemermann C, Schuppert A, Kindle R, Celi L, Marx G, Martin L. Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care. NPJ Digit Med. 2021;4:32.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 14]  [Cited by in RCA: 62]  [Article Influence: 15.5]  [Reference Citation Analysis (0)]
63.  Borera EC, Moore BL, Doufas AG, Pyeatt LD. An Adaptive Neural Network Filter for Improved Patient State Estimation in Closed-Loop Anesthesia Control. 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.  2011.  [PubMed]  [DOI]  [Full Text]
64.  Nemati S, Ghassemi MM, Clifford GD. Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:2978-2981.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 71]  [Cited by in RCA: 46]  [Article Influence: 5.1]  [Reference Citation Analysis (0)]