Meta-Analysis
Copyright ©The Author(s) 2015.
World J Orthop. Aug 18, 2015; 6(7): 537-558
Published online Aug 18, 2015. doi: 10.5312/wjo.v6.i7.537
Table 1 Ovid medline search strategy: Ovid MEDLINE®, Ovid MEDLINE® In-Process and Other Non-Indexed Citations, Ovid MEDLINE®, Daily and Ovid OLDMEDLINE®
No.Search syntax
1“Adolescent idiopathic scoliosis”.ab,ti.
2(AIS and scoliosis).ab,ti.
3Scoliosis/ and (exp adolescent/ or exp child/)
4Or/1-3
5“Curve progression”.ab,ti.
6“Disease susceptibility”.ab,ti.
7Prediction.ab,ti.
8“Disease progression”.ab,ti.
9Exp disease progression/
10Disease susceptibility/
11“Predictive value of tests”/
12Exp decision support techniques/
13Or/5-12
14Scoliosis/ra
15(Ogilvie JW or Ward K*).au. and scoliosis.ab,ti.
16“Scoliscore”.mp.
17“Axial biotech”.mp.
18Moreau A*.au. and scoliosis.ab,ti.
194 and 13
2013 and 14
21Or/15-20
22(genetic adj2 test*).ab,ti.
23“Genetic predisposition”.ab,ti.
24“Single nucleotide polymorphism”.ab,ti. Or (SNP and polymorphism).ab,ti.
25Genetic Testing/
26Exp genetic predisposition to disease/
27Polymorphism, single nucleotide/
28Or/22-27
294 and 28
3030. 21 or 29
Table 2 Excluded publications
No.Excluded publications
1Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, Willing MC, Grange DK, Braverman AC, Miller NH, Morcuende JA, Tang NL, Lam TP, Ng BK, Cheng JC, Dobbs MB, Gurnett CA. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet 2014; 23: 5271-5282
2Danielsson AJ, Nachemson AL. Radiologic findings and curve progression 22 years after treatment for adolescent idiopathic scoliosis: comparison of brace and surgical treatment with matching control group of straight individuals. Spine (Phila Pa 1976) 2001; 26: 516-525
3Grauers A, Danielsson A, Karlsson M, Gerdhem P: Familial heredity of idiopathic scoliosis unrelated to age at diagnosis and prognosis. Eur Spine J 2012; 21: S314
4Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, Takaso M, Tokunaga M, Nishikawa S, Maruta T, Moriya H. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine (Phila Pa 1976) 2002; 27: 2357-2362
5Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 1984; 66: 1061-1071
6Lowe TG, Burwell RG, Dangerfield PH. Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur Spine J 2004; 13: 257-265
7Machida M, Dubousset J, Yamada T, Kimura J. Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression--a prospective study. J Pineal Res 2009; 46: 344-348
8Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, Qiu X, Takahashi A, Jiang H, Yan H, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Hosono N, Tsuji T, Suzuki T, Sudo H, Kotani T, Yonezawa I, Kubo M, Tsunoda T, Watanabe K, Chiba K, Toyama Y, Qiu Y, Matsumoto M, Ikegawa S. Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. PLoS One 2013; 8: e72802
9Nault ML, Mac-Thiong JM, Roy-Beaudry M, deGuise J, Labelle H, Parent S. Three-dimensional spine parameters can differentiate between progressive and nonprogressive patients with AIS at the initial visit: a retrospective analysis. J Pediatr Orthop 2013; 33: 618-623
10Nault ML, Mac-Thiong JM, Roy-Beaudry M, Turgeon I, de Guise J, Labelle H, Parent S: Three-Dimensional Spinal Morphology can Differentiate Between Progressive and Non-Progressive Patients With Adolescent Idiopathic Scoliosis at the Initial Presentation. Spine (Phila Pa 1976) 2014
11Ogilvie JW. Update on prognostic genetic testing in adolescent idiopathic scoliosis (AIS). J Pediatr Orthop 2011; 31: S46-S48
12Ogura Y, Takahashi Y, Kou I, Nakajima M, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Yonezawa I, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Toyama Y, Matsumoto M, Ikegawa S. A replication study for association of 5 single nucleotide polymorphisms with curve progression of adolescent idiopathic scoliosis in Japanese patients. Spine (Phila Pa 1976) 2013; 38: 571-575
13Ogura Y, Takahashi Y, Kou I, Nakajima M, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Yonezawa I, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Toyama Y, Matsumoto M, Ikegawa S. A replication study for association of 53 single nucleotide polymorphisms in a scoliosis prognostic test with progression of adolescent idiopathic scoliosis in Japanese. Spine (Phila Pa 1976) 2013; 38: 1375-1379
14Patten SA, Moldovan F. Could genetic determinants of inner ear anomalies be a factor for the development of idiopathic scoliosis? Med Hypotheses 2011; 76: 438-440
15Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P. Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop 2012; 36: 671-677
16Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, Ma SL, Kwok RH, Qin L, Qiu Y, Cheng JC. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2007; 32: 1748-1753
17Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res 2007; 462: 53-58
18Roye BD, Wright ML, Williams BA, Matsumoto H, Corona J, Hyman JE, Roye DP, Vitale MG. Does ScoliScore provide more information than traditional clinical estimates of curve progression? Spine (Phila Pa 1976) 2012; 37: 2099-2103
19Sanders JO, Khoury JG, Kishan S, Browne RH, Mooney JF, Arnold KD, McConnell SJ, Bauman JA, Finegold DN. Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am 2008; 90: 540-553
20Soucacos PN, Zacharis K, Gelalis J, Soultanis K, Kalos N, Beris A, Xenakis T, Johnson EO. Assessment of curve progression in idiopathic scoliosis. Eur Spine J 1998; 7: 270-277
21Soucacos PN, Zacharis K, Soultanis K, Gelalis J, Xenakis T, Beris AE. Risk factors for idiopathic scoliosis: review of a 6-year prospective study. Orthopedics 2000; 23: 833-838
22Stokes IA, Aronsson DD. Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord 2001; 14: 317-322
23Sun X, Qiu Y, Zhu Z, Zhu F, Wang B, Yu Y, Qian B. Variations of the position of the cerebellar tonsil in idiopathic scoliotic adolescents with a cobb angle & gt; 40 degrees: a magnetic resonance imaging study. Spine (Phila Pa 1976) 2007; 32: 1680-1686
24Sun X, Zhu ZZ, Qiu Y, Wang B, Li WG, Zhu F, Yu Y, Qian BP, Ma WW. [The role of initial bone mineral status in predicting the early outcome of brace treatment in girls with adolescent idiopathic scoliosis]. Zhonghua Waike Zazhi 2008; 46: 1066-1069
25Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Hosono N, Kamatani N, Tsunoda T, Toyama Y, Kubo M, Matsumoto M, Ikegawa S. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet 2011; 43: 1237-1240
26Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S. Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res 2011; 29: 1055-1058
27Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S. Replication study of the association between adolescent idiopathic scoliosis and two estrogen receptor genes. J Orthop Res 2011; 29: 834-837
28Tang NL, Yeung HY, Hung VW, Di Liao C, Lam TP, Yeung HM, Lee KM, Ng BK, Cheng JC. Genetic epidemiology and heritability of AIS: A study of 415 Chinese female patients. J Orthop Res 2012; 30: 1464-1469
29Vijvermans V, Fabry G, Nijs J. Factors determining the final outcome of treatment of idiopathic scoliosis with the Boston brace: a longitudinal study. J Pediatr Orthop B 2004; 13: 143-149
30Wiley JW, Thomson JD, Mitchell TM, Smith BG, Banta JV. Effectiveness of the boston brace in treatment of large curves in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2000; 25: 2326-2332
31Wise CA, Gao X, Shoemaker S, Gordon D, Herring JA. Understanding genetic factors in idiopathic scoliosis, a complex disease of childhood. Curr Genomics 2008; 9: 51-59
32Wu H, Ronsky JL, Cheriet F, Harder J, Küpper JC, Zernicke RF. Time series spinal radiographs as prognostic factors for scoliosis and progression of spinal deformities. Eur Spine J 2011; 20: 112-117
33Yamauchi Y, Yamaguchi T, Asaka Y. Prediction of curve progression in idiopathic scoliosis based on initial roentgenograms. A proposal of an equation. Spine (Phila Pa 1976) 1988; 13: 1258-1261
34Yang T, Jia Q, Guo H, Xu J, Bai Y, Yang K, Luo F, Zhang Z, Hou T. Epidemiological survey of idiopathic scoliosis and sequence alignment analysis of multiple candidate genes. Int Orthop 2012; 36: 1307-1314
35Yang T, Xu JZ, Jia QZ, Guo H, Luo F, Ye Q, Bai Y. [Comparative analysis of sequence alignment of SH3GL1 gene as a disease candidate gene of adolescent idiopathic scoliosis]. Zhonghua Waike Zazhi 2010; 48: 435-438
36Yang Y, Wu Z, Zhao T, Wang H, Zhao D, Zhang J, Wang Y, Ding Y, Qiu G. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics 2009; 32: 411
37Ylikoski M. Spinal growth and progression of adolescent idiopathic scoliosis. Eur Spine J 1993; 1: 236-239
38Ylikoski M. Growth and progression of adolescent idiopathic scoliosis in girls. J Pediatr Orthop B 2005; 14: 320-324
39Yu Ws, Chan Ky, Yu FWP, Yeung Hy, Ng BKW, Lee Km, Lam Tp, Cheng JCY: Abnormal bone quality versus low bone mineral density in adolescent idiopathic scoliosis: a case-control study with in vivo high-resolution peripheral quantitative computed tomography. Spine Journal 2013
40Zhang HQ, Lu SJ, Tang MX, Chen LQ, Liu SH, Guo CF, Wang XY, Chen J, Xie L. Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2009; 34: 760-764
41Zhao D, Qiu GX, Wang YP, Zhang JG, Shen JX, Wu ZH, Wang H. Association of calmodulin1 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Orthop Surg 2009; 1: 58-65
Table 3 Selected studies
Ref.Study designPublicationSpine deformityAge (mean/range)GendernTreatmentInitial Cobb angle(degree)Follow-upDrop outProgression of deformitycriteriaAnalysis/Method ofpredictionIndicesusedPrediction validity(progressive vs stable spine deformities)
Upadhyay et al[73]RCSArt.Thoracic, thoracolumbar, lumbar< 18 Risser sign ≤ 2NS85Brace20-45Until skeletal maturity or surgical tretmentNSCobb increasing ≥ 5o, and/or vertebral rotation ≥ 5oComparative analysis of progress vs stable casesPredictor: Increase of Cobb angle and/or vertebral rotation ≥ 5o at 1-2 mo follow-up during brace treatmentOR = 33.23 (95%Cl: 4.0-270.4) P < 0.001 (1) Sensitivity: 39%; (2) Specificity: 98%; (3) +PV: 93%; and (4) -PV: 72%
Peterson et al[62]PChSArt.Thoracic, thoracolumbar10-15F (100%)159Observation (120) Electrical stimulation (39)25-30Until skeletal maturityNSCobb increasing ≥ 6oMultiple logistic regression modelingPredictors: (1) Risser sign (0-1); (2) Apical level (uperTh12); (3) Imbalance (10 mm); and (4) Age(1) Sensitivity: 81%2; (2) Specificity: 81%; (3) +PV: 82%; and (4) -PV: 80%
Ajemba et al[60]RChSArt.NS12.3 (10-15)F (87%) M (14%)44Observation (30) Brace (14)18-491 yr - skeletal maturityNSCobb increasing ≥ 5o6 multiple support vector classifier modelsPredictors: (1)16 Lenke Rad. Indices; (2)Wrist X-ray; (3) Age; (4) Sex; and (5) Growing index(1) Sensitivity: 67%-91%2; (2) Specificity: 22%-67%; (3) +PV: 73%-86%; and (4) -PV: 43%-67%
1Cheung et al[64]PCSArt.Right thoracic10-16F (87%) M (13%)30NS10-604-5 moNSCobb increasing >10oMultiple regression modeling, nomogramPredictor: (1) Spinal grows velocity (≥ 11 mm/yr); (2) Paraspinal EMG activity concave/convex ≥ 1.3(1) Sensitivity: 69%-79%2; (2) Specificity: 69%-79%; and (3) +PV: 60%-89%
1Danielsson et al[63]PChSArt.Thoracic, Thoracolumbar10-15 (skeletal)F (100%)92Observation Brace and electrical stimulation25-3516 yr14%Cobb increasing ≥ 6oRate comparisonPredictor: Premenarche at inclusion vs menarche at inclusionOR = 2.523 (95%Cl: 1.0-6.11) P = 0.05 (1) Sensitivity: 60%; (2) Specificity: 63%; (3) +PV: 53%; and (4) -PV: 70%
Kindsfater et al[46]RCSArt.Thoracic, thoracolumbar11-20F (71%) M (29%)17Observation (7) Brace (10)34 (15-90)< 1 yrNSCobb > 30o; Increasing > 10o /yrComparative analysis of progress vs stable casesPredictor: Level of platelet calmodulin (ng/μg of protein): progressive 1.4-10.7; stable < 1.4 (P = 0.001)OR = 275.03 (95%Cl: 4.8-15724.2) P = 0.007 (1) Sensitivity: 100%; (2) Specificity: 100%; (3) +PV: 100%; and (4) -PV: 100%
1Lowe et al[47]PChSArt.King I-VAdolescentsF (93%) M (7%)55Observation (28) Brace (17) Fusion(10) ≤ 251-3 yr9.80%Cobb increasing > 10o /yrComparative analysis of progress vs stable casesPredictor: Increasing of platelet calmodulin level during first year of observationOR = 11.03 (95%Cl: 1.7-69.9) P = 0.02 (1) Sensitivity: 69%; (2) Specificity: 83%; (3) +PV: 85%; and (4) -PV: 67%
Sun et al[67]RCSArt.Thoracic, thoracolumbar, lumbar10-16F (100%)142Brace20-400.6-5.9 yrNSCobb exceeding 45o, surgical tretmentMultiple logistic regression modelingPredictors: (1) Premenarche; (2) Curve > 30o; and (3) Risser sign: 0-1OR: 5.1-11.52P ≤ 0.002 (1) Sensitivity 72%-89%3; (2) Specificity 48%-77%; (3) +PV: 20%-33%; and (4) -PV: 94%- 97%
1Sun et al[66]RCSArt.Thoracic, thoracolumbar10-15F (100%)68Brace20-403-6 moNSCobb increasing > 6o, or exceeding 45oComparative analysis of progress vs stable casesPredictors: (1) Premenarche; (2) Curve > 30o; (3) L2-L4 BMD < 0.76 g/cm2; and (4) Thoracic curveOR: 6.6-11.22 (0.001 > P < 0.072) (1) Sensitivity: 74.5%; (2) Specificity: 64.7%
Hung et al[65]PCSArt.Thoracic, thoracolumbar, lumbar11-16F (100%)324Observation20-300.5-3.5 yrNSCobb increasing > 6o,Multiple logistic regression modelingPredictors: (1) Age at diagnosis < 13 yr; (2) Premenarche; (3) Risser sign: 0-1; (4) Curve pattern: thoracic or thoracolumbar; and (5) Initial Cobb angle > 30o; Osteopenia: decreased hip neck BMD at concave sideOR: 2.1-4.62 (0.001 > P < 0.044) (1) Sensitivity: 76% (95%Cl: 69-83); (2) Specificity: 70% (95%Cl: 62-77)
Lam et al[74]PChSArt.NS11-16F (100%) Chinese population294Observation (192), Brace (102)> 10; Mean: 26 (St. D, 8.2o)Mean, 3.4 yr (St. D, 1.57o)NSCobb increasing > 6oMultiple logistic regression modelingPredictors: (1)Age at diagnosis 11-13 yr, (2) Premenarche; (3) Initial Cobb angle > 25o; and (4) Ultrasound bone stiffness index (calcaneus) Z-score ≤ 0OR: 2.0-8.62 (0.0001 > P < 0.2) (1) Sensitivity: 84.7%; (2) Specificity: 66.5%
Lee et al[68]RCSArt.NS10-17F (82.3%) M (17.7%)1858 450Brace (331)10-30NSNSCobb > 30oRisk assessmentPredictor: Initial Cobb angle ≥ 26ovs 8o-10oHazard ratio, 8.82 (95%Cl: 6.85-11.31)
Tan et al[36]PCSArt.NS7-14F (84.9%) M (15.1%)186Observation Brace> 101-8 yr18%Cobb ≥ 30oRisk assessmentPredictor: Initial Cobb angle ≥ 25ovs < 25oOR = 24.62 (95%Cl: 9.9-60.6) P < 0.001 (1) Sensitivity: 68%3; (2) Specificity: 92%; (3) +PV: 68%; and (4) -PV: 92%
Modi et al[77]RCSArt.Thoracic, thoracolumbar10-15F (84%) M (16%)113Brace40-56Until skeletal maturity (Risser sign ≥ 4); average: 34 ± 13 moNSCobb increasing ≥ 5oComparative analysis of progress vs stable casesPredictor: Rib-vertebral angle at convex side of the curve apex after brace treatment (< 65ovs≥ 65o )OR = 5.63 (95%Cl: 2.2-13.9) P < 0.001 (1) Sensitivity: 45%; (2) Specificity: 87%; (3) +PV: 69%; and (4) -PV: 71%
Qiu et al[69]RCSArt.Thoracic, thoracolumbar10-20Chinese population120Brace25-402.5 ± 0.35 yrNSCobb increasing ≥ 5oComparative analysis of progress vs stable casesPredictor: NTF3 gene: rs11063714, genotype GG vs AAOR = 3.33 (95%Cl: 1.0-10.9) P = 0.08 (1) Sensitivity: 43%; (2) Specificity: 82%; (3) +PV: 56%; and (4) -PV: 72%
Xu et al[70]RCSArt.Thoracic, thoracolumbar, lumbar10-15F (87%) M (13%)312Brace20-400.6-2.2 yrNSCobb increasing ≥ 5o and/or surgical correctionLogistic regression modelingPredictors: (1) ERα gene: rs9340799, allele G; (2) TPH1 gene: rs10488682, allele A; (3) Risser sign O-1; and (4) Curve ≥ 30oOR: 1.2-3.62 0.0001 > P < 0.1 (1) Sensitivity: 51%; (2) Specificity: 82%; and (3) Correct predictions: 75%
Yeung et al[75]RCSArt.NS12-16F (100%) Chinese population340Observation> 20Until skeletal maturity, 16 years old or surgical interventionNSNSComparative analysis of Cobb angle in following genotypes of IGF1 SNP rs5742612: TT; TC; and CCPredictor: TT (mean Cobb, 38 ± 12.1, n = 169) vs CC (mean Cobb, 33o± 9.0, n = 33), P = 0.01 Cut-point: Cobb, 35.7oOR = 2.13 (95%Cl:1.0-4.4) P = 0.1 (1) Sensitivity: 88%; (2) Specificity: 22%; (3) +PV: 57%; and (4) -PV: 61%
1Ward et al[58]RChSArt.Severe: 8% Moderate/ mild: 92%9-13 at diagnosisF (100%) F (100%) M (100%)277 257 163NS> 10Till skeletal maturity or severe deformityNSSevere: Cobb > 40o Moderate: Cobb 25o-40oMultiple logistic regression modelingPredictor: Scale (1-200 ) based on 53 SNP markers; cut point, 40: 1-40 ( ≤ 1% risk of progression)OR=16.83 (95%Cl: 6.6-42.7) P < 0.001 (1) Sensitivity: 91%; (2) Specificity: 63%; (3) +PV: 17%; and (4) -PV: 99%
1Bohl et al[59]RCSArtNS≥ 10F (81%) M (19%)16Brace20-401 yr after brace discontinuation or skeletal maturity36%Cobb > 45oComparative analysis: patients with Cobb > 45ovs Cobb < 45o logistic regression modelingPredictor: Scale (1-200 ) based on 53 SNP markers and initial Cobb angle: cut-point, 160: 160-200 (high risk of curve progression with Cobb > 45o) vs < 160 (low risk of curve progression with Cobb > 45o)OR = 21.03 (95%Cl:1.5-293.3) P = 0.05 (1) Sensitivity: 78%; (2) Specificity: 86%; (3) +PV: 88%; and (4) -PV: 75%
Zhao et al[71]RChSArtDouble curves: thoracic, thoracolumbar or lumbar10-20Cases (AIS): F (90%) M (10%) Controls: F (75%) M (25%) Chinese population67 100Surgical correction30-90NSNSCobb ≥ 30oComparative analysis of cases vs healthy controlsPredictors: (1) ER1 gene: rs2234693, allele T; (2) CALM 1 gene: rs12885713, allele TOR: 1.7-1.83 0.01 > P < 0.05 (1) Sensitivity: 28%-69%; (2) Specificity: 44%-82%; (3) +PV: 45%-51%; and (4) -PV: 63%-68%
Zhou et al[72]RCSArt.NS11-18F (100%) Chinese population241NS20-100Until skeletal maturity54%NSComparative analysis of severe cases (mean Cobb, 36o± 13o) vs moderate cases (mean Cobb, 29o± 7.4o)Predictor: Il-17RC gene: rs708567, genotype GG, Cut-point: Cobb angle, 32.5oOR = 3.43 (95%Cl: 1.4-8.3) P = 0.007 (1) Sensitivity: 94%; (2) Specificity: 17%; (3) +PV: 60%; and (4) -PV: 69%
Moreau et al[44]RChSArt.Thoracic, thoracolumbar, lumbar13-20Cases (AIS): F (83%) M (17%) Controls: F (65%) M (35%)41 17Surgical correction30-90NSNSNSComparative analysis of AIS cases (mean Cobb, 54o± 14o) vs controls (non- idiopathic deformities)Predictor: low inhibition of forskolin stimulated cAMP by melatonin in osteoblasts vs significant inhibition of forskolin stimulated cAMP by melatonin in osteoblastsOR=3.93 (95%Cl: 0.45-33.7) P = 0.3 (1) Sensitivity: 20%; (2) Specificity: 94%; (3) +PV: 89%; and (4) -PV: 33%
Akoume et al[16]PCSArtAsymptomatic subjects at-risk of AIS5-15F (65%) M (35%)31Observation ≤ 102 yrNSCobb > 10oComparative analysis of cases with developed AIS spine deformity (mean Cobb, > 10o) vs subjects at risk, but without deformityPredictor: peripheral blood mononuclear cells electrical impedance after melatonin or iodomelatonin administration: < 120 ohms vs≥ 120o homsOR = 18.53 (95%Cl: 8.7-392.5) P = 0.03 (1) Sensitivity: 33%; (2) Specificity: 100%; (3) +PV: 100%; and (4) -PV: 70%
Akoume et al[61]RChSArtNSNSNS162 794NSNSNSNSCobb angle ≥ 45o Cobb angle 10o-44oComparative analysis of the G proteins functional statusPredictor: type of peripheral blood mononuclear cells G protein response to electrical stimulation: FG2 vs FG1 or FG3OR = 2.63 (95%Cl: 1.9-3.7) P < 0.001 (1) Sensitivity: 26%; (2) Specificity: 88%; (3) +PV: 56%; and (4) -PV: 67%
Yamamoto et al[76]RCSArt.NS9-15F (100%)28Analysis of curve history5-5905-2 yrNSCobb increasing > 4oComparative analysis of progressive cases vs stablePredictor: Brain stem function, abnormal vestibular-eye test vs normalOR = 24.03 (95%Cl: 2.4-240.6) P = 0.007 (1) Sensitivity: 91%; (2) Specificity: 71%; (3) +PV: 67%; and (4) -PV: 92%
Table 4 Risk of bias assessment
Ref.Questions for evaluationScore
Upadhyay et al[73]YesYesUnsureNoYesYesYesUnsureYesNoUnsureYesNoYes8
Peterson et al[62]YesYesYesYesYesYesYesUnsureNoNoUnsureYesYesYes10
Ajemba et al[60]YesYesNoYesYesYesYesUnsureYesNoUnsureYesYesYes10
Cheung et al[64]YesYesYesYesYesYesYesUnsureYesNoUnsureYesNoYes10
Danielsson et al[63]YesYesYesYesYesYesYesUnsureYesYesYesYesYesYes13
Kindsfater et al[46]YesYesNoYesYesYesYesUnsureYesNoUnsureYesYesYes10
Lowe et al[47]NoNoYesYesYesNoNoUnsureYesYesYesYesNoNo7
Sun et al[67]YesYesNoYesYesYesYesUnsureYesNoUnsureYesYesYes10
Sun et al[66]YesYesNoYesYesYesYesUnsureYesNoUnsureYesYesYes10
Hung et al[65]YesYesYesYesYesYesYesUnsureYesNoUnsureYesYesNo10
Lam et al[74]YesYesYesYesYesYesYesUnsureYesNoUnsureYesYesYes11
Lee et al[68]YesYesNoYesYesYesNoUnsureNoNoUnsureYesNoYes7
Tan et al[36]YesYesYesYesYesYesNoUnsureYesYesYesYesYesYes12
Modi et al[77]YesNoNoYesYesYesYesUnsureNoNoUnsureYesNoNo6
Qiu et al[69]YesYesNoNoYesYesYesUnsureYesNoUnsureYesNoNo7
Xu et al[70]YesYesNoYesYesYesYesUnsureYesNoUnsureYesNoYes9
Ward et al[58]YesNoNoYesYesYesYesUnsureNoNoUnsureNoYesYes7
Bohl et al[59]YesYesNoYesYesNoYesUnsureNoYesNoYesYesYes9
Zhao et al[71]YesNoUnsureYesYesYesYesUnsureNoNoUnsureYesNoYes7
Zhou et al[72]YesYesNoYesNoYesYesUnsureYesYesNoYesYesYes10
Moreau et al[44]YesYesNoYesNoYesYesUnsureNoNoUnsureYesNoYes7
Akoume et al[16]YesYesNoYesYesYesYesUnsureYesNoUnsureYesNoYes9
Akoume et al[61]NoNoNoNoYesNoUnsureUnsureNoNoUnsureYesNoNo2
Yamamoto et al[76]YesNoNoYesYesNoNoUnsureYesNoUnsureYesYesNo6
Yeung et al[75]YesNoNoYesNoYesYesUnsureNoNoUnsureYesYesYes7
Table 5 Summary table of meta-analysis of association between studied characteristics and progressive adolescent idiopathic scoliosis
StudiedcharacteristicsStudyParticipantsHeterogeneity
Summary statistics
P valueLevel of evidence (GRADE)
(n)(n)I2(%)LevelPooled odds ratio95% confident limits
LowerUpper
Age (< 13 yr)376059Moderate2.71.84.60.001Low
Osteopenia368651Moderate2.81.45.60.005Low
Brain stem dysfunction128NANA24.02.4240.30.007Very low
Multiple indices17105735Moderate9.66.115.2< 0.001Low
Curve pattern460759Moderate2.31.24.60.017Low
Curve progression during bracing185NANA33.24.0272.90.001Very low
Initial Cobb angle8371990High7.64.213.6< 0.001Low
Melatonin signaling2890Low6.51.138.20.037Low
Platelet calmodulin27239.9Moderate39.92.2735.90.013Low
Premenarche698064High4.02.07.9< 0.001Low
Rib-vertebral angle1113NANA5.62.213.9< 0.001Very low
Skeletal immaturity489150Moderate2.81.64.8< 0.001Low
SNP CALM1167NANA1.71.02.90.036Very low
SNP ER1237963High2.41.34.70.009Low
SNP IGF11340NANA2.10.94.50.054Very low
SNP IL17RC1312NANA1.50.92.40.074Very low
SNP NTF31120NANA3.31.010.90.050Very low
SNP TPH11312NANA2.11.04.40.052Very low
SNPs(53), ScoliScore test27130Low17.27.141.5< 0.001Low
Gi proteins functional status1956NANA2.61.93.7< 0.001Very low