Copyright
©The Author(s) 2015.
World J Orthop. Aug 18, 2015; 6(7): 537-558
Published online Aug 18, 2015. doi: 10.5312/wjo.v6.i7.537
Published online Aug 18, 2015. doi: 10.5312/wjo.v6.i7.537
No. | Search syntax |
1 | “Adolescent idiopathic scoliosis”.ab,ti. |
2 | (AIS and scoliosis).ab,ti. |
3 | Scoliosis/ and (exp adolescent/ or exp child/) |
4 | Or/1-3 |
5 | “Curve progression”.ab,ti. |
6 | “Disease susceptibility”.ab,ti. |
7 | Prediction.ab,ti. |
8 | “Disease progression”.ab,ti. |
9 | Exp disease progression/ |
10 | Disease susceptibility/ |
11 | “Predictive value of tests”/ |
12 | Exp decision support techniques/ |
13 | Or/5-12 |
14 | Scoliosis/ra |
15 | (Ogilvie JW or Ward K*).au. and scoliosis.ab,ti. |
16 | “Scoliscore”.mp. |
17 | “Axial biotech”.mp. |
18 | Moreau A*.au. and scoliosis.ab,ti. |
19 | 4 and 13 |
20 | 13 and 14 |
21 | Or/15-20 |
22 | (genetic adj2 test*).ab,ti. |
23 | “Genetic predisposition”.ab,ti. |
24 | “Single nucleotide polymorphism”.ab,ti. Or (SNP and polymorphism).ab,ti. |
25 | Genetic Testing/ |
26 | Exp genetic predisposition to disease/ |
27 | Polymorphism, single nucleotide/ |
28 | Or/22-27 |
29 | 4 and 28 |
30 | 30. 21 or 29 |
No. | Excluded publications |
1 | Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, Willing MC, Grange DK, Braverman AC, Miller NH, Morcuende JA, Tang NL, Lam TP, Ng BK, Cheng JC, Dobbs MB, Gurnett CA. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet 2014; 23: 5271-5282 |
2 | Danielsson AJ, Nachemson AL. Radiologic findings and curve progression 22 years after treatment for adolescent idiopathic scoliosis: comparison of brace and surgical treatment with matching control group of straight individuals. Spine (Phila Pa 1976) 2001; 26: 516-525 |
3 | Grauers A, Danielsson A, Karlsson M, Gerdhem P: Familial heredity of idiopathic scoliosis unrelated to age at diagnosis and prognosis. Eur Spine J 2012; 21: S314 |
4 | Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, Takaso M, Tokunaga M, Nishikawa S, Maruta T, Moriya H. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine (Phila Pa 1976) 2002; 27: 2357-2362 |
5 | Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 1984; 66: 1061-1071 |
6 | Lowe TG, Burwell RG, Dangerfield PH. Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur Spine J 2004; 13: 257-265 |
7 | Machida M, Dubousset J, Yamada T, Kimura J. Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression--a prospective study. J Pineal Res 2009; 46: 344-348 |
8 | Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, Qiu X, Takahashi A, Jiang H, Yan H, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Hosono N, Tsuji T, Suzuki T, Sudo H, Kotani T, Yonezawa I, Kubo M, Tsunoda T, Watanabe K, Chiba K, Toyama Y, Qiu Y, Matsumoto M, Ikegawa S. Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. PLoS One 2013; 8: e72802 |
9 | Nault ML, Mac-Thiong JM, Roy-Beaudry M, deGuise J, Labelle H, Parent S. Three-dimensional spine parameters can differentiate between progressive and nonprogressive patients with AIS at the initial visit: a retrospective analysis. J Pediatr Orthop 2013; 33: 618-623 |
10 | Nault ML, Mac-Thiong JM, Roy-Beaudry M, Turgeon I, de Guise J, Labelle H, Parent S: Three-Dimensional Spinal Morphology can Differentiate Between Progressive and Non-Progressive Patients With Adolescent Idiopathic Scoliosis at the Initial Presentation. Spine (Phila Pa 1976) 2014 |
11 | Ogilvie JW. Update on prognostic genetic testing in adolescent idiopathic scoliosis (AIS). J Pediatr Orthop 2011; 31: S46-S48 |
12 | Ogura Y, Takahashi Y, Kou I, Nakajima M, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Yonezawa I, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Toyama Y, Matsumoto M, Ikegawa S. A replication study for association of 5 single nucleotide polymorphisms with curve progression of adolescent idiopathic scoliosis in Japanese patients. Spine (Phila Pa 1976) 2013; 38: 571-575 |
13 | Ogura Y, Takahashi Y, Kou I, Nakajima M, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Yonezawa I, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Toyama Y, Matsumoto M, Ikegawa S. A replication study for association of 53 single nucleotide polymorphisms in a scoliosis prognostic test with progression of adolescent idiopathic scoliosis in Japanese. Spine (Phila Pa 1976) 2013; 38: 1375-1379 |
14 | Patten SA, Moldovan F. Could genetic determinants of inner ear anomalies be a factor for the development of idiopathic scoliosis? Med Hypotheses 2011; 76: 438-440 |
15 | Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P. Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop 2012; 36: 671-677 |
16 | Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, Ma SL, Kwok RH, Qin L, Qiu Y, Cheng JC. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2007; 32: 1748-1753 |
17 | Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res 2007; 462: 53-58 |
18 | Roye BD, Wright ML, Williams BA, Matsumoto H, Corona J, Hyman JE, Roye DP, Vitale MG. Does ScoliScore provide more information than traditional clinical estimates of curve progression? Spine (Phila Pa 1976) 2012; 37: 2099-2103 |
19 | Sanders JO, Khoury JG, Kishan S, Browne RH, Mooney JF, Arnold KD, McConnell SJ, Bauman JA, Finegold DN. Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am 2008; 90: 540-553 |
20 | Soucacos PN, Zacharis K, Gelalis J, Soultanis K, Kalos N, Beris A, Xenakis T, Johnson EO. Assessment of curve progression in idiopathic scoliosis. Eur Spine J 1998; 7: 270-277 |
21 | Soucacos PN, Zacharis K, Soultanis K, Gelalis J, Xenakis T, Beris AE. Risk factors for idiopathic scoliosis: review of a 6-year prospective study. Orthopedics 2000; 23: 833-838 |
22 | Stokes IA, Aronsson DD. Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord 2001; 14: 317-322 |
23 | Sun X, Qiu Y, Zhu Z, Zhu F, Wang B, Yu Y, Qian B. Variations of the position of the cerebellar tonsil in idiopathic scoliotic adolescents with a cobb angle & gt; 40 degrees: a magnetic resonance imaging study. Spine (Phila Pa 1976) 2007; 32: 1680-1686 |
24 | Sun X, Zhu ZZ, Qiu Y, Wang B, Li WG, Zhu F, Yu Y, Qian BP, Ma WW. [The role of initial bone mineral status in predicting the early outcome of brace treatment in girls with adolescent idiopathic scoliosis]. Zhonghua Waike Zazhi 2008; 46: 1066-1069 |
25 | Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Hosono N, Kamatani N, Tsunoda T, Toyama Y, Kubo M, Matsumoto M, Ikegawa S. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet 2011; 43: 1237-1240 |
26 | Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S. Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res 2011; 29: 1055-1058 |
27 | Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S. Replication study of the association between adolescent idiopathic scoliosis and two estrogen receptor genes. J Orthop Res 2011; 29: 834-837 |
28 | Tang NL, Yeung HY, Hung VW, Di Liao C, Lam TP, Yeung HM, Lee KM, Ng BK, Cheng JC. Genetic epidemiology and heritability of AIS: A study of 415 Chinese female patients. J Orthop Res 2012; 30: 1464-1469 |
29 | Vijvermans V, Fabry G, Nijs J. Factors determining the final outcome of treatment of idiopathic scoliosis with the Boston brace: a longitudinal study. J Pediatr Orthop B 2004; 13: 143-149 |
30 | Wiley JW, Thomson JD, Mitchell TM, Smith BG, Banta JV. Effectiveness of the boston brace in treatment of large curves in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2000; 25: 2326-2332 |
31 | Wise CA, Gao X, Shoemaker S, Gordon D, Herring JA. Understanding genetic factors in idiopathic scoliosis, a complex disease of childhood. Curr Genomics 2008; 9: 51-59 |
32 | Wu H, Ronsky JL, Cheriet F, Harder J, Küpper JC, Zernicke RF. Time series spinal radiographs as prognostic factors for scoliosis and progression of spinal deformities. Eur Spine J 2011; 20: 112-117 |
33 | Yamauchi Y, Yamaguchi T, Asaka Y. Prediction of curve progression in idiopathic scoliosis based on initial roentgenograms. A proposal of an equation. Spine (Phila Pa 1976) 1988; 13: 1258-1261 |
34 | Yang T, Jia Q, Guo H, Xu J, Bai Y, Yang K, Luo F, Zhang Z, Hou T. Epidemiological survey of idiopathic scoliosis and sequence alignment analysis of multiple candidate genes. Int Orthop 2012; 36: 1307-1314 |
35 | Yang T, Xu JZ, Jia QZ, Guo H, Luo F, Ye Q, Bai Y. [Comparative analysis of sequence alignment of SH3GL1 gene as a disease candidate gene of adolescent idiopathic scoliosis]. Zhonghua Waike Zazhi 2010; 48: 435-438 |
36 | Yang Y, Wu Z, Zhao T, Wang H, Zhao D, Zhang J, Wang Y, Ding Y, Qiu G. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics 2009; 32: 411 |
37 | Ylikoski M. Spinal growth and progression of adolescent idiopathic scoliosis. Eur Spine J 1993; 1: 236-239 |
38 | Ylikoski M. Growth and progression of adolescent idiopathic scoliosis in girls. J Pediatr Orthop B 2005; 14: 320-324 |
39 | Yu Ws, Chan Ky, Yu FWP, Yeung Hy, Ng BKW, Lee Km, Lam Tp, Cheng JCY: Abnormal bone quality versus low bone mineral density in adolescent idiopathic scoliosis: a case-control study with in vivo high-resolution peripheral quantitative computed tomography. Spine Journal 2013 |
40 | Zhang HQ, Lu SJ, Tang MX, Chen LQ, Liu SH, Guo CF, Wang XY, Chen J, Xie L. Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2009; 34: 760-764 |
41 | Zhao D, Qiu GX, Wang YP, Zhang JG, Shen JX, Wu ZH, Wang H. Association of calmodulin1 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Orthop Surg 2009; 1: 58-65 |
Ref. | Study design | Publication | Spine deformity | Age (mean/range) | Gender | n | Treatment | Initial Cobb angle(degree) | Follow-up | Drop out | Progression of deformitycriteria | Analysis/Method ofprediction | Indicesused | Prediction validity(progressive vs stable spine deformities) |
Upadhyay et al[73] | RCS | Art. | Thoracic, thoracolumbar, lumbar | < 18 Risser sign ≤ 2 | NS | 85 | Brace | 20-45 | Until skeletal maturity or surgical tretment | NS | Cobb increasing ≥ 5o, and/or vertebral rotation ≥ 5o | Comparative analysis of progress vs stable cases | Predictor: Increase of Cobb angle and/or vertebral rotation ≥ 5o at 1-2 mo follow-up during brace treatment | OR = 33.23 (95%Cl: 4.0-270.4) P < 0.001 (1) Sensitivity: 39%; (2) Specificity: 98%; (3) +PV: 93%; and (4) -PV: 72% |
Peterson et al[62] | PChS | Art. | Thoracic, thoracolumbar | 10-15 | F (100%) | 159 | Observation (120) Electrical stimulation (39) | 25-30 | Until skeletal maturity | NS | Cobb increasing ≥ 6o | Multiple logistic regression modeling | Predictors: (1) Risser sign (0-1); (2) Apical level (uperTh12); (3) Imbalance (10 mm); and (4) Age | (1) Sensitivity: 81%2; (2) Specificity: 81%; (3) +PV: 82%; and (4) -PV: 80% |
Ajemba et al[60] | RChS | Art. | NS | 12.3 (10-15) | F (87%) M (14%) | 44 | Observation (30) Brace (14) | 18-49 | 1 yr - skeletal maturity | NS | Cobb increasing ≥ 5o | 6 multiple support vector classifier models | Predictors: (1)16 Lenke Rad. Indices; (2)Wrist X-ray; (3) Age; (4) Sex; and (5) Growing index | (1) Sensitivity: 67%-91%2; (2) Specificity: 22%-67%; (3) +PV: 73%-86%; and (4) -PV: 43%-67% |
1Cheung et al[64] | PCS | Art. | Right thoracic | 10-16 | F (87%) M (13%) | 30 | NS | 10-60 | 4-5 mo | NS | Cobb increasing >10o | Multiple regression modeling, nomogram | Predictor: (1) Spinal grows velocity (≥ 11 mm/yr); (2) Paraspinal EMG activity concave/convex ≥ 1.3 | (1) Sensitivity: 69%-79%2; (2) Specificity: 69%-79%; and (3) +PV: 60%-89% |
1Danielsson et al[63] | PChS | Art. | Thoracic, Thoracolumbar | 10-15 (skeletal) | F (100%) | 92 | Observation Brace and electrical stimulation | 25-35 | 16 yr | 14% | Cobb increasing ≥ 6o | Rate comparison | Predictor: Premenarche at inclusion vs menarche at inclusion | OR = 2.523 (95%Cl: 1.0-6.11) P = 0.05 (1) Sensitivity: 60%; (2) Specificity: 63%; (3) +PV: 53%; and (4) -PV: 70% |
Kindsfater et al[46] | RCS | Art. | Thoracic, thoracolumbar | 11-20 | F (71%) M (29%) | 17 | Observation (7) Brace (10) | 34 (15-90) | < 1 yr | NS | Cobb > 30o; Increasing > 10o /yr | Comparative analysis of progress vs stable cases | Predictor: Level of platelet calmodulin (ng/μg of protein): progressive 1.4-10.7; stable < 1.4 (P = 0.001) | OR = 275.03 (95%Cl: 4.8-15724.2) P = 0.007 (1) Sensitivity: 100%; (2) Specificity: 100%; (3) +PV: 100%; and (4) -PV: 100% |
1Lowe et al[47] | PChS | Art. | King I-V | Adolescents | F (93%) M (7%) | 55 | Observation (28) Brace (17) Fusion(10) | ≤ 25 | 1-3 yr | 9.80% | Cobb increasing > 10o /yr | Comparative analysis of progress vs stable cases | Predictor: Increasing of platelet calmodulin level during first year of observation | OR = 11.03 (95%Cl: 1.7-69.9) P = 0.02 (1) Sensitivity: 69%; (2) Specificity: 83%; (3) +PV: 85%; and (4) -PV: 67% |
Sun et al[67] | RCS | Art. | Thoracic, thoracolumbar, lumbar | 10-16 | F (100%) | 142 | Brace | 20-40 | 0.6-5.9 yr | NS | Cobb exceeding 45o, surgical tretment | Multiple logistic regression modeling | Predictors: (1) Premenarche; (2) Curve > 30o; and (3) Risser sign: 0-1 | OR: 5.1-11.52P ≤ 0.002 (1) Sensitivity 72%-89%3; (2) Specificity 48%-77%; (3) +PV: 20%-33%; and (4) -PV: 94%- 97% |
1Sun et al[66] | RCS | Art. | Thoracic, thoracolumbar | 10-15 | F (100%) | 68 | Brace | 20-40 | 3-6 mo | NS | Cobb increasing > 6o, or exceeding 45o | Comparative analysis of progress vs stable cases | Predictors: (1) Premenarche; (2) Curve > 30o; (3) L2-L4 BMD < 0.76 g/cm2; and (4) Thoracic curve | OR: 6.6-11.22 (0.001 > P < 0.072) (1) Sensitivity: 74.5%; (2) Specificity: 64.7% |
Hung et al[65] | PCS | Art. | Thoracic, thoracolumbar, lumbar | 11-16 | F (100%) | 324 | Observation | 20-30 | 0.5-3.5 yr | NS | Cobb increasing > 6o, | Multiple logistic regression modeling | Predictors: (1) Age at diagnosis < 13 yr; (2) Premenarche; (3) Risser sign: 0-1; (4) Curve pattern: thoracic or thoracolumbar; and (5) Initial Cobb angle > 30o; Osteopenia: decreased hip neck BMD at concave side | OR: 2.1-4.62 (0.001 > P < 0.044) (1) Sensitivity: 76% (95%Cl: 69-83); (2) Specificity: 70% (95%Cl: 62-77) |
Lam et al[74] | PChS | Art. | NS | 11-16 | F (100%) Chinese population | 294 | Observation (192), Brace (102) | > 10; Mean: 26 (St. D, 8.2o) | Mean, 3.4 yr (St. D, 1.57o) | NS | Cobb increasing > 6o | Multiple logistic regression modeling | Predictors: (1)Age at diagnosis 11-13 yr, (2) Premenarche; (3) Initial Cobb angle > 25o; and (4) Ultrasound bone stiffness index (calcaneus) Z-score ≤ 0 | OR: 2.0-8.62 (0.0001 > P < 0.2) (1) Sensitivity: 84.7%; (2) Specificity: 66.5% |
Lee et al[68] | RCS | Art. | NS | 10-17 | F (82.3%) M (17.7%) | 1858 450 | Brace (331) | 10-30 | NS | NS | Cobb > 30o | Risk assessment | Predictor: Initial Cobb angle ≥ 26ovs 8o-10o | Hazard ratio, 8.82 (95%Cl: 6.85-11.31) |
Tan et al[36] | PCS | Art. | NS | 7-14 | F (84.9%) M (15.1%) | 186 | Observation Brace | > 10 | 1-8 yr | 18% | Cobb ≥ 30o | Risk assessment | Predictor: Initial Cobb angle ≥ 25ovs < 25o | OR = 24.62 (95%Cl: 9.9-60.6) P < 0.001 (1) Sensitivity: 68%3; (2) Specificity: 92%; (3) +PV: 68%; and (4) -PV: 92% |
Modi et al[77] | RCS | Art. | Thoracic, thoracolumbar | 10-15 | F (84%) M (16%) | 113 | Brace | 40-56 | Until skeletal maturity (Risser sign ≥ 4); average: 34 ± 13 mo | NS | Cobb increasing ≥ 5o | Comparative analysis of progress vs stable cases | Predictor: Rib-vertebral angle at convex side of the curve apex after brace treatment (< 65ovs≥ 65o ) | OR = 5.63 (95%Cl: 2.2-13.9) P < 0.001 (1) Sensitivity: 45%; (2) Specificity: 87%; (3) +PV: 69%; and (4) -PV: 71% |
Qiu et al[69] | RCS | Art. | Thoracic, thoracolumbar | 10-20 | Chinese population | 120 | Brace | 25-40 | 2.5 ± 0.35 yr | NS | Cobb increasing ≥ 5o | Comparative analysis of progress vs stable cases | Predictor: NTF3 gene: rs11063714, genotype GG vs AA | OR = 3.33 (95%Cl: 1.0-10.9) P = 0.08 (1) Sensitivity: 43%; (2) Specificity: 82%; (3) +PV: 56%; and (4) -PV: 72% |
Xu et al[70] | RCS | Art. | Thoracic, thoracolumbar, lumbar | 10-15 | F (87%) M (13%) | 312 | Brace | 20-40 | 0.6-2.2 yr | NS | Cobb increasing ≥ 5o and/or surgical correction | Logistic regression modeling | Predictors: (1) ERα gene: rs9340799, allele G; (2) TPH1 gene: rs10488682, allele A; (3) Risser sign O-1; and (4) Curve ≥ 30o | OR: 1.2-3.62 0.0001 > P < 0.1 (1) Sensitivity: 51%; (2) Specificity: 82%; and (3) Correct predictions: 75% |
Yeung et al[75] | RCS | Art. | NS | 12-16 | F (100%) Chinese population | 340 | Observation | > 20 | Until skeletal maturity, 16 years old or surgical intervention | NS | NS | Comparative analysis of Cobb angle in following genotypes of IGF1 SNP rs5742612: TT; TC; and CC | Predictor: TT (mean Cobb, 38 ± 12.1, n = 169) vs CC (mean Cobb, 33o± 9.0, n = 33), P = 0.01 Cut-point: Cobb, 35.7o | OR = 2.13 (95%Cl:1.0-4.4) P = 0.1 (1) Sensitivity: 88%; (2) Specificity: 22%; (3) +PV: 57%; and (4) -PV: 61% |
1Ward et al[58] | RChS | Art. | Severe: 8% Moderate/ mild: 92% | 9-13 at diagnosis | F (100%) F (100%) M (100%) | 277 257 163 | NS | > 10 | Till skeletal maturity or severe deformity | NS | Severe: Cobb > 40o Moderate: Cobb 25o-40o | Multiple logistic regression modeling | Predictor: Scale (1-200 ) based on 53 SNP markers; cut point, 40: 1-40 ( ≤ 1% risk of progression) | OR=16.83 (95%Cl: 6.6-42.7) P < 0.001 (1) Sensitivity: 91%; (2) Specificity: 63%; (3) +PV: 17%; and (4) -PV: 99% |
1Bohl et al[59] | RCS | Art | NS | ≥ 10 | F (81%) M (19%) | 16 | Brace | 20-40 | 1 yr after brace discontinuation or skeletal maturity | 36% | Cobb > 45o | Comparative analysis: patients with Cobb > 45ovs Cobb < 45o logistic regression modeling | Predictor: Scale (1-200 ) based on 53 SNP markers and initial Cobb angle: cut-point, 160: 160-200 (high risk of curve progression with Cobb > 45o) vs < 160 (low risk of curve progression with Cobb > 45o) | OR = 21.03 (95%Cl:1.5-293.3) P = 0.05 (1) Sensitivity: 78%; (2) Specificity: 86%; (3) +PV: 88%; and (4) -PV: 75% |
Zhao et al[71] | RChS | Art | Double curves: thoracic, thoracolumbar or lumbar | 10-20 | Cases (AIS): F (90%) M (10%) Controls: F (75%) M (25%) Chinese population | 67 100 | Surgical correction | 30-90 | NS | NS | Cobb ≥ 30o | Comparative analysis of cases vs healthy controls | Predictors: (1) ER1 gene: rs2234693, allele T; (2) CALM 1 gene: rs12885713, allele T | OR: 1.7-1.83 0.01 > P < 0.05 (1) Sensitivity: 28%-69%; (2) Specificity: 44%-82%; (3) +PV: 45%-51%; and (4) -PV: 63%-68% |
Zhou et al[72] | RCS | Art. | NS | 11-18 | F (100%) Chinese population | 241 | NS | 20-100 | Until skeletal maturity | 54% | NS | Comparative analysis of severe cases (mean Cobb, 36o± 13o) vs moderate cases (mean Cobb, 29o± 7.4o) | Predictor: Il-17RC gene: rs708567, genotype GG, Cut-point: Cobb angle, 32.5o | OR = 3.43 (95%Cl: 1.4-8.3) P = 0.007 (1) Sensitivity: 94%; (2) Specificity: 17%; (3) +PV: 60%; and (4) -PV: 69% |
Moreau et al[44] | RChS | Art. | Thoracic, thoracolumbar, lumbar | 13-20 | Cases (AIS): F (83%) M (17%) Controls: F (65%) M (35%) | 41 17 | Surgical correction | 30-90 | NS | NS | NS | Comparative analysis of AIS cases (mean Cobb, 54o± 14o) vs controls (non- idiopathic deformities) | Predictor: low inhibition of forskolin stimulated cAMP by melatonin in osteoblasts vs significant inhibition of forskolin stimulated cAMP by melatonin in osteoblasts | OR=3.93 (95%Cl: 0.45-33.7) P = 0.3 (1) Sensitivity: 20%; (2) Specificity: 94%; (3) +PV: 89%; and (4) -PV: 33% |
Akoume et al[16] | PCS | Art | Asymptomatic subjects at-risk of AIS | 5-15 | F (65%) M (35%) | 31 | Observation | ≤ 10 | 2 yr | NS | Cobb > 10o | Comparative analysis of cases with developed AIS spine deformity (mean Cobb, > 10o) vs subjects at risk, but without deformity | Predictor: peripheral blood mononuclear cells electrical impedance after melatonin or iodomelatonin administration: < 120 ohms vs≥ 120o homs | OR = 18.53 (95%Cl: 8.7-392.5) P = 0.03 (1) Sensitivity: 33%; (2) Specificity: 100%; (3) +PV: 100%; and (4) -PV: 70% |
Akoume et al[61] | RChS | Art | NS | NS | NS | 162 794 | NS | NS | NS | NS | Cobb angle ≥ 45o Cobb angle 10o-44o | Comparative analysis of the G proteins functional status | Predictor: type of peripheral blood mononuclear cells G protein response to electrical stimulation: FG2 vs FG1 or FG3 | OR = 2.63 (95%Cl: 1.9-3.7) P < 0.001 (1) Sensitivity: 26%; (2) Specificity: 88%; (3) +PV: 56%; and (4) -PV: 67% |
Yamamoto et al[76] | RCS | Art. | NS | 9-15 | F (100%) | 28 | Analysis of curve history | 5-59 | 05-2 yr | NS | Cobb increasing > 4o | Comparative analysis of progressive cases vs stable | Predictor: Brain stem function, abnormal vestibular-eye test vs normal | OR = 24.03 (95%Cl: 2.4-240.6) P = 0.007 (1) Sensitivity: 91%; (2) Specificity: 71%; (3) +PV: 67%; and (4) -PV: 92% |
Ref. | Questions for evaluation | Score | |||||||||||||
Upadhyay et al[73] | Yes | Yes | Unsure | No | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | No | Yes | 8 |
Peterson et al[62] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unsure | No | No | Unsure | Yes | Yes | Yes | 10 |
Ajemba et al[60] | Yes | Yes | No | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | Yes | Yes | 10 |
Cheung et al[64] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | No | Yes | 10 |
Danielsson et al[63] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unsure | Yes | Yes | Yes | Yes | Yes | Yes | 13 |
Kindsfater et al[46] | Yes | Yes | No | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | Yes | Yes | 10 |
Lowe et al[47] | No | No | Yes | Yes | Yes | No | No | Unsure | Yes | Yes | Yes | Yes | No | No | 7 |
Sun et al[67] | Yes | Yes | No | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | Yes | Yes | 10 |
Sun et al[66] | Yes | Yes | No | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | Yes | Yes | 10 |
Hung et al[65] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | Yes | No | 10 |
Lam et al[74] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | Yes | Yes | 11 |
Lee et al[68] | Yes | Yes | No | Yes | Yes | Yes | No | Unsure | No | No | Unsure | Yes | No | Yes | 7 |
Tan et al[36] | Yes | Yes | Yes | Yes | Yes | Yes | No | Unsure | Yes | Yes | Yes | Yes | Yes | Yes | 12 |
Modi et al[77] | Yes | No | No | Yes | Yes | Yes | Yes | Unsure | No | No | Unsure | Yes | No | No | 6 |
Qiu et al[69] | Yes | Yes | No | No | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | No | No | 7 |
Xu et al[70] | Yes | Yes | No | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | No | Yes | 9 |
Ward et al[58] | Yes | No | No | Yes | Yes | Yes | Yes | Unsure | No | No | Unsure | No | Yes | Yes | 7 |
Bohl et al[59] | Yes | Yes | No | Yes | Yes | No | Yes | Unsure | No | Yes | No | Yes | Yes | Yes | 9 |
Zhao et al[71] | Yes | No | Unsure | Yes | Yes | Yes | Yes | Unsure | No | No | Unsure | Yes | No | Yes | 7 |
Zhou et al[72] | Yes | Yes | No | Yes | No | Yes | Yes | Unsure | Yes | Yes | No | Yes | Yes | Yes | 10 |
Moreau et al[44] | Yes | Yes | No | Yes | No | Yes | Yes | Unsure | No | No | Unsure | Yes | No | Yes | 7 |
Akoume et al[16] | Yes | Yes | No | Yes | Yes | Yes | Yes | Unsure | Yes | No | Unsure | Yes | No | Yes | 9 |
Akoume et al[61] | No | No | No | No | Yes | No | Unsure | Unsure | No | No | Unsure | Yes | No | No | 2 |
Yamamoto et al[76] | Yes | No | No | Yes | Yes | No | No | Unsure | Yes | No | Unsure | Yes | Yes | No | 6 |
Yeung et al[75] | Yes | No | No | Yes | No | Yes | Yes | Unsure | No | No | Unsure | Yes | Yes | Yes | 7 |
Studiedcharacteristics | Study | Participants | Heterogeneity | Summary statistics | P value | Level of evidence (GRADE) | |||
(n) | (n) | I2(%) | Level | Pooled odds ratio | 95% confident limits | ||||
Lower | Upper | ||||||||
Age (< 13 yr) | 3 | 760 | 59 | Moderate | 2.7 | 1.8 | 4.6 | 0.001 | Low |
Osteopenia | 3 | 686 | 51 | Moderate | 2.8 | 1.4 | 5.6 | 0.005 | Low |
Brain stem dysfunction | 1 | 28 | NA | NA | 24.0 | 2.4 | 240.3 | 0.007 | Very low |
Multiple indices1 | 7 | 1057 | 35 | Moderate | 9.6 | 6.1 | 15.2 | < 0.001 | Low |
Curve pattern | 4 | 607 | 59 | Moderate | 2.3 | 1.2 | 4.6 | 0.017 | Low |
Curve progression during bracing | 1 | 85 | NA | NA | 33.2 | 4.0 | 272.9 | 0.001 | Very low |
Initial Cobb angle | 8 | 3719 | 90 | High | 7.6 | 4.2 | 13.6 | < 0.001 | Low |
Melatonin signaling | 2 | 89 | 0 | Low | 6.5 | 1.1 | 38.2 | 0.037 | Low |
Platelet calmodulin | 2 | 72 | 39.9 | Moderate | 39.9 | 2.2 | 735.9 | 0.013 | Low |
Premenarche | 6 | 980 | 64 | High | 4.0 | 2.0 | 7.9 | < 0.001 | Low |
Rib-vertebral angle | 1 | 113 | NA | NA | 5.6 | 2.2 | 13.9 | < 0.001 | Very low |
Skeletal immaturity | 4 | 891 | 50 | Moderate | 2.8 | 1.6 | 4.8 | < 0.001 | Low |
SNP CALM1 | 1 | 67 | NA | NA | 1.7 | 1.0 | 2.9 | 0.036 | Very low |
SNP ER1 | 2 | 379 | 63 | High | 2.4 | 1.3 | 4.7 | 0.009 | Low |
SNP IGF1 | 1 | 340 | NA | NA | 2.1 | 0.9 | 4.5 | 0.054 | Very low |
SNP IL17RC | 1 | 312 | NA | NA | 1.5 | 0.9 | 2.4 | 0.074 | Very low |
SNP NTF3 | 1 | 120 | NA | NA | 3.3 | 1.0 | 10.9 | 0.050 | Very low |
SNP TPH1 | 1 | 312 | NA | NA | 2.1 | 1.0 | 4.4 | 0.052 | Very low |
SNPs(53), ScoliScore test | 2 | 713 | 0 | Low | 17.2 | 7.1 | 41.5 | < 0.001 | Low |
Gi proteins functional status | 1 | 956 | NA | NA | 2.6 | 1.9 | 3.7 | < 0.001 | Very low |
- Citation: Noshchenko A, Hoffecker L, Lindley EM, Burger EL, Cain CM, Patel VV, Bradford AP. Predictors of spine deformity progression in adolescent idiopathic scoliosis: A systematic review with meta-analysis. World J Orthop 2015; 6(7): 537-558
- URL: https://www.wjgnet.com/2218-5836/full/v6/i7/537.htm
- DOI: https://dx.doi.org/10.5312/wjo.v6.i7.537