Minireviews
Copyright ©2013 Baishideng Publishing Group Co.
World J Orthop. Apr 18, 2013; 4(2): 67-74
Published online Apr 18, 2013. doi: 10.5312/wjo.v4.i2.67
Table 1 Exothermic activity of polymethylmethacrylate mixed with nano-MgO (12.8 nm) vs polymethylmethacrylate control[25]
1 s1 min2 min10 min107 min
PMMA (°C)44.9845.8250.1052.547.85
PMMA and nano-MgO (°C)39.6540.3646.9948.8544.10
Table 2 Diametral tensile strength of polymethylmethacrylate and MMA:AA: MA co-polymer mixtures[47]
PMMAMMA:AA:AMAMMA:AA:AMATensile strength
quantity (g)quantity (g)ratio(Mpa)
200-31.3 ± 9.0
19180:20:1039.3 ± 3.0
17380:20:1036.2 ± 4.7
19170:30:1033.1 ± 4.2
17370:30:1026.6 ± 6.1
Table 3 Summary of polymethylmethacrylate bone cement additives
AdditiveSummary
GentamicinReduces post-operative infection rates. Powdered format (2/60 g or 2/40 g) shows no significant impact on mechanical strength, however increased gentamicin concentration decreases mechanical strength
Vitamin EImproves cement cytocompatibility and reduces peak temperature. 10% vitamin E concentration does not significantly affect mechanical strength. Increasing concentrations associated with increased setting time and decreased mechanical strength
Polymer MMA:AA:AMAReduces bone cement shrinkage and improves fracture toughness. 80:20:10 significantly improves mechanical strength vs control
NanoMgO and NanoBaSO4Improves osteoblast adhesion, nanoMgO (12.8 nm) minimizes tissue necrosis and nanoBaSO4 (100 nm) improves mechanical strength
Barium sulfateAllows radiological identification of cement. 10% concentration is not associated with significant decrease in mechanical strength vs control. As concentration increases, mechanical strength decreases
Chitosan nanoparticlesIn vitro studies show significant antibacterial activity against S. aureus and S. epidermidis with no significant difference in cytoxicity and mechanical strength vs control PMMA
Silver nanoparticlesAgNP (1%) has strong and continued antibacterial activity (against A. baumannii, P. aeruginosa, P. mirabilis and S. aureus) but with reduction in mechanical strength. Nanosilver (5-50 nm) has antibacterial activity against S. epidermidis, MRSE and MRSA with no significant difference in cytotoxicity vs control