Observational Study
Copyright ©The Author(s) 2024.
World J Orthop. Nov 18, 2024; 15(11): 1023-1035
Published online Nov 18, 2024. doi: 10.5312/wjo.v15.i11.1023
Table 1 Participants’ demographic characteristics, n (%)
Variables
Subcategory
Frequency (n = 71)
Age in years< 4033 (46.5)
40-6032 (45.1)
> 606 (8.5)
Experience as a pediatric orthopedic surgeon in years< 1041 (57.8)
11-2021 (29.6)
> 209 (12.7)
Main hospital affiliationUniversity15 (21.1)
1Military14 (19.7)
Ministry of health26 (36.6)
Specialist or medical city11 (15.5)
Private5 (7.0)
Region of practiceCentral29 (40.9)
Northern2 (2.8)
Southern9 (12.7)
Eastern13 (18.3)
Western13 (18.3)
2Outside Saudi Arabia5 (7.0)
Place of fellowshipSaudi Arabia31 (43.7)
Northern America (Canada and United States)23 (32.4)
Europe11 (15.5)
3Others6 (8.5)
Table 2 Participants’ questionnaire responses, n (%)
Topical category
Response categories and data
Perceptions towards AIStrongly disagreeDisagreeNeutralAgreeStrongly agree
AI can enhance diagnostic accuracy in pediatric orthopedic cases2 (2.8)6 (8.5)30 (42.3)25 (35.2)8 (11.3)
AI has the potential to improve treatment planning for pediatric orthopedic conditions1 (1.4)4 (5.6)26 (36.6)34 (47.9)6 (8.5)
AI integration in pediatric orthopedics can enhance surgical outcomes1 (1.4)9 (12.7)32 (45.1)23 (32.4)6 (8.5)
AI applications can save time and enhance productivity in pediatric orthopedic surgery2 (2.8)1 (1.4)24 (33.8)34 (47.9)10 (14.1)
Familiarity with AINot at all familiarSlightly familiarModerately familiarVery familiarExtremely familiar
How familiar are you with AI in medicine?18 (25.4)26 (36.6)24 (33.8)2 (2.8)1 (1.4)
Willingness to adopt AI toolsVery unwillingSomewhat unwillingNeutralSomewhat willingVery willing
How willing are you to adopt AI-based tools or systems in your clinical practice, if they are proven to be safe and effective?0 (0)0 (0)9 (12.7)30 (42.3)32 (45.1)
Factors affecting decision makingNot important at allSlightly importantModerately importantQuite importantHighly important
Evidence-based research supporting AI in pediatric orthopedics0 (0)4 (5.6)13 (18.3)19 (26.8)35 (49.3)
Trust in the accuracy of AI-driven diagnostics1 (1.4)6 (8.5)12 (16.9)21 (29.6)31 (43.7)
Support and training provided for AI utilization1 (1.4)0 (0)13 (18.3)18 (25.4)39 (54.9)
Protection of patient privacy and data security with AI implementation1 (1.4)2 (2.8)4 (5.6)16 (22.5)48 (67.6)
Ease of integration of AI systems into current practice0 (0.0)2 (2.8)13 (18.3)22 (31.0)34 (47.9)
Interest in learning about AIVery uninterestedSomewhat uninterestedNeutralSomewhat interestedVery interested
How interested are you in learning more about AI and how to apply them in your clinical practice?0 (0)3 (4.2)8 (11.3)24 (33.8)36 (50.7)
Table 3 Participants’ questionnaire responses continued, n (%)
Topical category
Response categories and data
1Which of the following AI tools have you encountered?
AI speech-to-text tools (e.g., mobius conveyor, the nuance dragon ambient experience, augmedix)23 (32.4)
Image analysis tools (e.g., nuance’s precision imaging network, zebra medical vision)16 (22.5)
AI clinical decision support tools (e.g., Sepsis Watch, ChatGPT 35/4)14 (19.7)
Surgical support tools (e.g., Da Vinci surgical system, ActivSight system)10 (14.1)
None of the above34 (47.9)
Would you recommend a tested and proven AI tool in pediatric orthopedic surgery to other clinicians?
Yes64 (91.4)
No6 (8.6)
What role do you think AI will play in pediatric orthopedic surgery over the next 5 to 10 years?
It will not have a significant impact2 (2.8)
It will be used in a limited capacity31 (43.7)
It will become a fundamental part of the field23 (32.4)
Uncertain15 (21.1)
Table 4 Factors related to the domains in the study
Variables
Subcategory
Familiarity
Perception
Willingness
Decision-making
Median (IQR)
4P value
Median (IQR)
4P value
Median (IQR)
4P value
Median (IQR)
4P value
Age in years< 402.0 (1)1.722 (0.423)19.0 (5)1.723 (0.422)5.0 (1)0.619 (0.734)23.0 (7)0.030 (0.985)
40-602.0 (2)18.5 (5)5.0 (1)22.5 (5)
> 601.5 (2)16.0 (5)5.0 (2)21.0 (7)
Experience in years< 102.0 (1)7.326 (0.026)a18.0 (4)7.037 (0.030)a5.0 (1)1.409 (0.494)23.0 (6)0.287 (0.866)
11-203.0 (1)20.0 (5)5.0 (1)22.0 (5)
> 201.0 (2)15.0 (5)5.0 (2)21.0 (8)
Hospital affiliationUniversity3.0 (2)1.575 (0.813)18.0 (6)6.079 (0.193)6.0 (1)1.141 (0.888)22.0 (6)1.744 (0.783)
1Military2.0 (1)19.5 (3)5.0 (1)24.0 (6)
Ministry of Health2.0 (2)18.5 (4)5.0 (1)23.0 (6)
2Specialist2.0 (1)17.0 (3)5.0 (1)21.0 (9)
Private2.0 (2)15.0 (4)5.0 (1)19.0 (6)
RegionCentral region3.0 (1)9.019 (0.108)19.0 (6)3.464 (0.629)5.0 (1)6.033 (0.303)24.0 (6)8.445 (0.133)
Northern2.5 (0)18.5 (0)6.0 (0)24.5 (0)
Southern1.0 (2)17.0 (4)5.0 (2)22.0 (6)
Eastern2.0 (2)20.0 (6)6.0 (2)22.0 (5)
Western2.0 (1)17.0 (6)5.0 (2)19.0 (10)
Gulf countries2.0 (1)17.0 (3)5.0 (1)21.0 (5)
FellowshipSaudi Arabia2.0 (2)1.055 (0.788)17.0 (6)1.063 (0.786)5.0 (1)2.053 (0.561)24.0 (6)5.545 (0.136)
3Northern America2.0 (1)19.0 (5)5.0 (1)21.0 (6)
Europe2.0 (2)20.0 (6)6.0 (1)22.0 (5)
Others1.5 (2)17.5 (4)5.5 (1)20.0 (8)
Future outlookSignificant impact1.5 (0)2.219 (0.528)13.0 (0)9.985 (0.019)a4.5 (0)1.452 (0.693)17.0 (0)5.572 (0.134)
Limited capacity2.0 (1)17.0 (6)5.0 (1)23.0 (8)
Fundamental part2.0 (1)20.0 (4)6.0 (1)21.0 (5)
Uncertain2.0 (2)17.0 (6)5.0 (1)25.0 (5)
Table 5 Bivariate correlation among study domains
Domain
Familiarity
Perception
Willingness
Decision-making
Familiarity1.000 (0)0.568 (< 0.001)0.262 (0.027)0.269 (0.023)
Perception0.568 (< 0.001)1.000 (0)0.560 (< 0.001)0.456 (< 0.001)
Willingness0.262 (0.027)0.560 (< 0.001)1.000 (0)0.430 (< 0.001)
Decision-making0.269 (0.023)0.356 (< 0.001)0.430 (< 0.001)1.000 (0)