Case Control Study
Copyright ©The Author(s) 2023.
World J Orthop. Oct 18, 2023; 14(10): 741-754
Published online Oct 18, 2023. doi: 10.5312/wjo.v14.i10.741
Table 1 Baseline data comparison. Counts (%) unless otherwise specified
Features
Non-eLOS (n = 383)
eLOS (n = 380)
Statistic (t/χ2 )
P value
Sex5.4180.020
Male107 (27.9)136 (35.8)
Female276 (72.1)244 (64.2)
Age (yr)0.0960.757
60-85255 (66.6)257 (67.6)
> 85128 (33.4)123 (32.4)
BMI (kg/m2)2.5780.461
< 18.548 (12.5)44 (11.6)
18.5-24.9220 (57.4)239 (62.9)
25.0-29.999 (25.8)82 (21.6)
> 30.016 (4.2)15 (3.9)
Fracture type20.516P < 0.001
Femoral neck fracture165 (43.1)226 (59.5)
Intertrochanteric fracture218 (56.9)154 (40.5)
ASA classification20.313P < 0.001
I-II197 (51.4)134 (35.3)
III-IV186 (48.6)246 (64.7)
Admission time5.3400.021
Monday to Thursday248 (64.8)215 (56.6)
Friday to Sunday135 (35.2)165 (43.2)
Time from injury to admission5.5130.019
≤ 24 h322 (84.1)294 (77.4)
> 24 h61 (15.9)86 (22.6)
Comorbidities3.99 2.224.19 2.251.2210.223
Hypertension207 (54.0)245 (64.5)8.5880.003
Diabetes85 (22.2)112 (29.5)5.2790.022
ACS59 (15.4)66 (17.4)0.5370.464
Cerebral infarction120 (31.3)150 (39.5)5.5310.019
AKI8 (2.1)17 (4.5)3.4230.064
DVT66 (17.2)91 (23.9)5.2630.022
History of smoking14 (3.4)17 (4.5)0.3280.567
Oral anticoagulant use71 (18.5)71 (18.7)0.0030.959
History of fracture77 (20.1)83 (21.8)0.3480.556
Hip fracture21 (5.5)29 (7.6)1.4380.230
Lumbar fracture25 (6.5)24 (6.3)0.0140.905
Delayed surgery153 (39.9)267 (70.3)70.842P < 0.001
Type of surgery
THA52 (13.6)95 (25.0)16.002P < 0.001
HHA106 (27.7)127 (33.4)2.9680.085
Reduction and fixation225 (58.7)158 (41.6)22.488P < 0.001
Duration of surgery96.62 ± 27.83118.43 ± 24.321.7430.082
Intraoperative blood loss164.54 ± 85.26162.33 ± 104.20-0.3210.748
Blood transfusion127 (33.2)132 (34.7)0.2120.645
ICU transfer103 (26.9)111 (29.2)0.5080.476
Type of anaesthesia0.7690.380
General336 (87.7)341 (89.7)
Regional47 (12.3)39 (10.3)
Heart rate at admission (60-100)339 (88.5)331 (87.1)0.3530.553
Laboratory examination at admission
RBC (≥ 4.3)86 (22.5)87 (22.9)0.0210.884
WBC (3.5-9.5)208 (54.3)217 (57.1)0.6050.437
Hb (≥ 110)251 (65.5)268 (70.5)2.1840.139
PLT (125-350)321 (83.8)306 (80.5)1.4060.236
N (40-75)65 (17.0)81 (21.3)2.3270.127
HCT (≥ 40)82 (21.4)65 (17.1)2.2720.132
K (3.5-5.1)260 (67.9)265 (69.7)0.3050.581
Ca (≥ 2.1)257 (67.1)260 (68.4)0.1520.697
Na (137-145)248 (64.8)229 (60.3)1.6400.200
ALB (30-40)233 (60.8)243 (63.9)0.7870.375
ALT (9-50)347 (90.5)342 (90.0)0.0790.779
AST (15-40)338 (88.3)316 (83.2)4.0400.044
LDH (120-246)188 (49.1)179 (47.1)3.0000.584
BUN (3.6-9.5)304 (79.4)302 (79.5)0.0010.973
Cr (58-110)205 (53.5)221 (58.2)1.6600.198
PT (9.4-12.5)77 (20.1)93 (24.5)2.1030.147
APTT (25.1-36.5)326 (85.1)331 (87.1)0.6300.427
INR (0.8-1.2)311 (81.2)304 (80.0)0.1760.675
FIB (2.38-4.98)344 (89.8)344 (90.5)0.1080.742
D-dimer (≤ 6500)218 (56.9)165 (43.4)13.902P < 0.001
Cardiac colour ultrasound at admission
AV (≥ 1.0)367 (95.8)347 (91.3)6.4460.011
EF (≥ 70)208 (54.3)217 (57.1)0.6050.437
Laboratory examination after surgery
Hb (≥ 110)87 (22.7)92 (24.2)0.2370.626
ALB (30-40)310 (80.9)303 (79.7)0.1750.676
Cr (58-110)222 (58.0)232 (61.1)0.7550.385
Table 2 Evaluation of machine learning models in the original data
Model name
Accuracy
Precision
Recall
F1 score
AUC
LR0.6800.6800.6760.6780.747
DT0.9240.9940.8530.9180.988
RF0.9240.9400.9050.9220.985
SVM0.6510.6360.7030.6670.739
NB0.6570.6760.5980.6340.709
KNN0.7470.7480.7420.7450.828
XGB0.9120.9410.8790.9010.976
ANN0.8860.8990.8680.8830.963
Table 3 Evaluation of machine learning models after 10-fold cross-validation
Model name
Accuracy
Precision
Recall
F1 score
AUC
LR0.6500.6430.6680.6550.650
DT0.6060.6160.5520.5830.605
RF0.6190.6180.6130.6160.619
SVM0.6640.6560.6590.6580.712
NB0.6440.6570.5950.6240.643
KNN0.6170.6110.6390.6250.617
XGB0.6300.6320.6160.6240.630
ANN0.6060.5960.6450.6190.606