For: | Nau T, Teuschl A. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering. World J Orthop 2015; 6(1): 127-136 [PMID: 25621217 DOI: 10.5312/wjo.v6.i1.127] |
---|---|
URL: | https://www.wjgnet.com/2218-5836/full/v6/i1/127.htm |
Number | Citing Articles |
1 |
Spencer P. Lake, Qian Liu, Malcolm Xing, Leanne E. Iannucci, Zhanwen Wang, Chunfeng Zhao. Principles of Tissue Engineering. 2020; : 989 doi: 10.1016/B978-0-12-818422-6.00056-3
|
2 |
Biao Chen, Jianying Zhang, Daibang Nie, Guangyi Zhao, Freddie H. Fu, James H.‐C. Wang. Characterization of the structure of rabbit anterior cruciate ligament and its stem/progenitor cells. Journal of Cellular Biochemistry 2019; 120(5): 7446 doi: 10.1002/jcb.28019
|
3 |
Sonia Wahed, Colin Dunstan, Philip Boughton, Andrew Ruys, Shaikh Faisal, Tania Wahed, Bidita Salahuddin, Xinying Cheng, Yang Zhou, Chun Wang, Mohammad Islam, Shazed Aziz. Functional Ultra-High Molecular Weight Polyethylene Composites for Ligament Reconstructions and Their Targeted Applications in the Restoration of the Anterior Cruciate Ligament. Polymers 2022; 14(11): 2189 doi: 10.3390/polym14112189
|
4 |
Madison E. Bates, Leia Troop, M. Ethan Brown, Jennifer L. Puetzer. Temporal application of lysyl oxidase during hierarchical collagen fiber formation differentially effects tissue mechanics. Acta Biomaterialia 2023; 160: 98 doi: 10.1016/j.actbio.2023.02.024
|
5 |
Yu‐Chung Liu, Shih‐Heng Chen, Chen‐Hsiang Kuan, Shih‐Hsien Chen, Wei‐Yuan Huang, Hao‐Xuan Chen, Tzu‐Wei Wang. Assembly of Interfacial Polyelectrolyte Complexation Fibers with Mineralization Gradient for Physiologically‐Inspired Ligament Regeneration. Advanced Materials 2024; 36(25) doi: 10.1002/adma.202314294
|
6 |
Jisheng Ran, Yejun Hu, Huihui Le, Yangwu Chen, Zefeng Zheng, Xiao Chen, Zi Yin, Ruijian Yan, Zhangchu Jin, Chenqi Tang, Jiayun Huang, Yanjia Gu, Langhai Xu, Shengjun Qian, Wei Zhang, Boon Chin Heng, Pioletti Dominique, Weishan Chen, Lidong Wu, Weiliang Shen, Hongwei Ouyang. Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: A preliminary study. Acta Biomaterialia 2017; 53: 307 doi: 10.1016/j.actbio.2017.02.027
|
7 |
Andreas Teuschl, Patrick Heimel, Silvia Nürnberger, Martijn van Griensven, Heinz Redl, Thomas Nau. A Novel Silk Fiber–Based Scaffold for Regeneration of the Anterior Cruciate Ligament. The American Journal of Sports Medicine 2016; 44(6): 1547 doi: 10.1177/0363546516631954
|
8 |
Fanglong Song, Dawei Jiang, Tianchen Wang, Yi Wang, Fengmei Chen, Guoxing Xu, Yifan Kang, Yinquan Zhang. Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells. Cellular Physiology and Biochemistry 2017; 41(3): 875 doi: 10.1159/000460005
|
9 |
Andreas Herbert Teuschl, Stefan Tangl, Patrick Heimel, Uwe Yacine Schwarze, Xavier Monforte, Heinz Redl, Thomas Nau. Osteointegration of a Novel Silk Fiber–Based ACL Scaffold by Formation of a Ligament-Bone Interface. The American Journal of Sports Medicine 2019; 47(3): 620 doi: 10.1177/0363546518818792
|
10 |
Jennifer L. Puetzer, Tianchi Ma, Ignacio Sallent, Amy Gelmi, Molly M. Stevens. Driving Hierarchical Collagen Fiber Formation for Functional Tendon, Ligament, and Meniscus Replacement. Biomaterials 2021; 269: 120527 doi: 10.1016/j.biomaterials.2020.120527
|
11 |
Luka Savić, Edyta M. Augustyniak, Adele Kastensson, Sarah Snelling, Roxanna E. Abhari, Mathew Baldwin, Andrew Price, William Jackson, Andrew Carr, Pierre-Alexis Mouthuy. Early development of a polycaprolactone electrospun augment for anterior cruciate ligament reconstruction. Materials Science and Engineering: C 2021; 129: 112414 doi: 10.1016/j.msec.2021.112414
|
12 |
Hatem B. Afana, Thomas Nau, John Nyland. Physeal-Sparing Anterior Cruciate Ligament Reconstruction for Skeletally Immature Patients: All-Epiphyseal Technique Using Quadricep Tendon Autograft. Case Reports in Orthopedics 2021; 2021: 1 doi: 10.1155/2021/5519822
|
13 |
Ya Tang, Jialiang Tian, Long Li, Lin Huang, Quan Shen, Shanzhu Guo, Yue Jiang. Biomimetic Biphasic Electrospun Scaffold for Anterior Cruciate Ligament Tissue Engineering. Tissue Engineering and Regenerative Medicine 2021; 18(5): 819 doi: 10.1007/s13770-021-00376-7
|
14 |
Paulos Y. Mengsteab, Mark McKenna, Junqiu Cheng, Zhibo Sun, Cato T. Laurencin. Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials 2017; 21: 391 doi: 10.1007/978-3-319-44785-8_19
|
15 |
Kyota Ishibashi, Eiji Sasaki, Shizuka Sasaki, Yuka Kimura, Yuji Yamamoto, Yasuyuki Ishibashi. Medial stabilizing technique preserves anatomical joint line and increases range of motion compared with the gap-balancing technique in navigated total knee arthroplasty. The Knee 2020; 27(2): 558 doi: 10.1016/j.knee.2019.12.002
|
16 |
Trinath Biswal. Biopolymers in Pharmaceutical and Food Applications. 2024; : 497 doi: 10.1002/9783527848133.ch23
|
17 |
Xiaohan Sun, Nanxin Zhang, Longhui Chen, Yuchao Lai, Shasha Yang, Qiang Li, Yunquan Zheng, Li Chen, Xianai Shi, Jianmin Yang. Collagen/polyvinyl alcohol scaffolds combined with platelet-rich plasma to enhance anterior cruciate ligament repair. Biomaterials Advances 2025; 169: 214164 doi: 10.1016/j.bioadv.2024.214164
|
18 |
Jeevithan Elango, Bin Bao, Wenhui Wu. Cartilage Tissue and Knee Joint Biomechanics. 2024; : 453 doi: 10.1016/B978-0-323-90597-8.00019-0
|
19 |
S Lessim, S Oughlis, J J Lataillade, V Migonney, S Changotade, D Lutomski, F Poirier. Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly(sodium styrene sulfonate) (polyNaSS): correlation with physicochemical parameters of proteins. Biomedical Materials 2015; 10(6): 065021 doi: 10.1088/1748-6041/10/6/065021
|
20 |
Mahnaz Amini, Jagadeesh K. Venkatesan, Wei Liu, Amélie Leroux, Tuan Ngoc Nguyen, Henning Madry, Véronique Migonney, Magali Cucchiarini. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. International Journal of Molecular Sciences 2022; 23(22): 14467 doi: 10.3390/ijms232214467
|
21 |
Caroline Emonts, Benedict Bauer, Johannes Pitts, Yvonne Roger, Andrea Hoffmann, Henning Menzel, Thomas Gries. Mechanical, Biological and In Vitro Degradation Investigation of Braided Scaffolds for Tendon and Ligament Tissue Engineering Based on Different Polycaprolactone Materials with Chitosan-Graft-PCL Surface Modification. Polymers 2024; 16(16): 2349 doi: 10.3390/polym16162349
|
22 |
Xin Wang, Yang Huang, Xiongbo Song, Lin Guo, Guangxing Chen, Liu Yang, Cheng Chen, Xiaoyuan Gong. A Pilot Study of Aptamer-Conjugated Silk Ligament with MSCs Recruitment Ability for ACL Reconstruction. Journal of Natural Fibers 2023; 20(1) doi: 10.1080/15440478.2022.2153194
|
23 |
Caroline Emonts, David Wienen, Benedict Bauer, Akram Idrissi, Thomas Gries. 3D-Braided Poly-ε-Caprolactone-Based Scaffolds for Ligament Tissue Engineering. Journal of Functional Biomaterials 2022; 13(4): 230 doi: 10.3390/jfb13040230
|
24 |
Michael N. Brown, Brian J. Shiple, Michael Scarpone. Regenerative Approaches to Tendon and Ligament Conditions. Physical Medicine and Rehabilitation Clinics of North America 2016; 27(4): 941 doi: 10.1016/j.pmr.2016.07.003
|
25 |
Cédric Laurent, Xing Liu, Natalia De Isla, Xiong Wang, Rachid Rahouadj. Defining a scaffold for ligament tissue engineering: What has been done, and what still needs to be done. Journal of Cellular Immunotherapy 2018; 4(1): 4 doi: 10.1016/j.jocit.2018.09.002
|
26 |
Magda Silva, Fernando N. Ferreira, Natália M. Alves, Maria C. Paiva. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. Journal of Nanobiotechnology 2020; 18(1) doi: 10.1186/s12951-019-0556-1
|
27 |
Eugenia Pugliese, Andrea Rossoni, Dimitrios I. Zeugolis. Enthesis repair – State of play. Biomaterials Advances 2024; 157: 213740 doi: 10.1016/j.bioadv.2023.213740
|
28 |
Yunpeng Bai, Takahiro Kanno, Hiroto Tatsumi, Kenichi Miyamoto, Jingjing Sha, Katsumi Hideshima, Yumi Matsuzaki. Feasibility of a Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/poly-d/l-lactide Composite as a Regenerative Biomaterial in Maxillofacial Surgery. Materials 2018; 11(10): 2047 doi: 10.3390/ma11102047
|
29 |
Chao Ning, Pinxue Li, Cangjian Gao, Liwei Fu, Zhiyao Liao, Guangzhao Tian, Han Yin, Muzhe Li, Xiang Sui, Zhiguo Yuan, Shuyun Liu, Quanyi Guo. Recent advances in tendon tissue engineering strategy. Frontiers in Bioengineering and Biotechnology 2023; 11 doi: 10.3389/fbioe.2023.1115312
|
30 |
Thomas Nau, Andreas Teuschl. Organ Tissue Engineering. Reference Series in Biomedical Engineering 2021; : 489 doi: 10.1007/978-3-030-44211-8_7
|
31 |
Ganesh Narayanan, Maumita Bhattacharjee, Lakshmi S. Nair, Cato T. Laurencin. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. Regenerative Engineering and Translational Medicine 2017; 3(3): 133 doi: 10.1007/s40883-017-0036-9
|
32 |
Nagaraju Shiga, Dumpala Nandini Reddy, Birru Bhaskar, Vasagiri Nagarjuna. Biomaterials in Tissue Engineering and Regenerative Medicine. 2021; : 505 doi: 10.1007/978-981-16-0002-9_15
|
33 |
|
34 |
Aris Sopilidis, Vasileios Stamatopoulos, Vasileios Giannatos, Georgios Taraviras, Andreas Panagopoulos, Stavros Taraviras. Integrating Modern Technologies into Traditional Anterior Cruciate Ligament Tissue Engineering. Bioengineering 2025; 12(1): 39 doi: 10.3390/bioengineering12010039
|
35 |
Jinsung Park, Hyunsoo Soh, Sungsin Jo, Subin Weon, Seung Hoon Lee, Jeong-Ah Park, Myung-Kyu Lee, Tae-Hwan Kim, Il-Hoon Sung, Jin Kyu Lee. Scaffold-induced compression enhances ligamentization potential of decellularized tendon graft reseeded with ACL-derived cells. iScience 2023; 26(12): 108521 doi: 10.1016/j.isci.2023.108521
|
36 |
George Dan Mogoşanu, Alexandru Mihai Grumezescu, Laurenţiu Mogoantă, Ludovic Everard Bejenaru, Cornelia Bejenaru. Nanobiomaterials in Soft Tissue Engineering. 2016; : 83 doi: 10.1016/B978-0-323-42865-1.00004-0
|
37 |
Chaowen Zhang, Lu Lu, Wenqiang Li, Lihua Li, Changren Zhou. Effects of crystallization temperature and spherulite size on cracking behavior of semi-crystalline polymers. Polymer Bulletin 2016; 73(11): 2961 doi: 10.1007/s00289-016-1634-2
|
38 |
Bao-Shi Fan, Yang Liu, Ji-Ying Zhang, You-Rong Chen, Meng Yang, Jia-Kuo Yu. Principles for establishment of the stem cell bank and its applications on management of sports injuries. Stem Cell Research & Therapy 2021; 12(1) doi: 10.1186/s13287-021-02360-3
|
39 |
Fatma Nur Parın. Comprehensive Materials Processing. 2024; : 72 doi: 10.1016/B978-0-323-96020-5.00007-8
|
40 |
Brindha J., Balamurali M. M., Kaushik Chanda. Evolutionary approaches in protein engineering towards biomaterial construction. RSC Advances 2019; 9(60): 34720 doi: 10.1039/C9RA06807D
|
41 |
Benedict Bauer, Caroline Emonts, Louisa Bonten, Rokaya Annan, Felix Merkord, Thomas Vad, Akram Idrissi, Thomas Gries, Andreas Blaeser. Melt-Spun, Cross-Section Modified Polycaprolactone Fibers for Use in Tendon and Ligament Tissue Engineering. Fibers 2022; 10(3): 23 doi: 10.3390/fib10030023
|
42 |
Eleonor Svantesson, Marcin Kowalczuk, Ajay Kanakamedala, Lee Sasala, Volker Musahl. ACL Injuries in Female Athletes. 2019; : 83 doi: 10.1016/B978-0-323-54839-7.00010-5
|
43 |
Eleonor Svantesson, Eduard Alentorn-Geli, Olufemi R. Ayeni, Volker Musahl, Ramón Cugat, Jón Karlsson, Kristian Samuelsson. Future Perspectives of Anterior Cruciate Ligament Reconstruction. Operative Techniques in Orthopaedics 2017; 27(1): 79 doi: 10.1053/j.oto.2017.01.014
|
44 |
Qiao Yang, Jianfeng Li, Weiwei Su, Liu Yu, Ting Li, Yongdi Wang, Kairui Zhang, Yaobin Wu, Ling Wang. Electrospun aligned poly(ε-caprolactone) nanofiber yarns guiding 3D organization of tendon stem/progenitor cells in tenogenic differentiation and tendon repair. Frontiers in Bioengineering and Biotechnology 2022; 10 doi: 10.3389/fbioe.2022.960694
|
45 |
Eugenia Pugliese, Ignacio Sallent, Sofia Ribeiro, Alexandre Trotier, Stefanie H. Korntner, Yves Bayon, Dimitrios I. Zeugolis. Development of three-layer collagen scaffolds to spatially direct tissue-specific cell differentiation for enthesis repair. Materials Today Bio 2023; 19: 100584 doi: 10.1016/j.mtbio.2023.100584
|
46 |
Jui-Yang Hsieh, Kai-Wen Yang, Yi-You Huang. Materials Properties and Application Strategy for Ligament Tissue Engineering. Journal of Medical and Biological Engineering 2022; 42(3): 281 doi: 10.1007/s40846-022-00706-7
|
47 |
David Miranda-Nieves, Elliot L. Chaikof. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomaterials Science & Engineering 2017; 3(5): 694 doi: 10.1021/acsbiomaterials.6b00250
|
48 |
Leia D. Troop, Jennifer L. Puetzer. Intermittent cyclic stretch of engineered ligaments drives hierarchical collagen fiber maturation in a dose- and organizational-dependent manner. Acta Biomaterialia 2024; 185: 296 doi: 10.1016/j.actbio.2024.07.025
|
49 |
Alexander D. Orsi, Srinath Chakravarthy, Paul K. Canavan, Estefanía Peña, Ruben Goebel, Askhan Vaziri, Hamid Nayeb-Hashemi. The effects of knee joint kinematics on anterior cruciate ligament injury and articular cartilage damage. Computer Methods in Biomechanics and Biomedical Engineering 2016; 19(5): 493 doi: 10.1080/10255842.2015.1043626
|
50 |
Gregory R. Waryasz, Stephen Marcaccio, Joseph A. Gil, Brett D. Owens, Paul D. Fadale. Anterior Cruciate Ligament Repair and Biologic Innovations. JBJS Reviews 2017; 5(5): e2 doi: 10.2106/JBJS.RVW.16.00050
|
51 |
Chun-Hui Wang, Wei Hou, Ming Yan, Zhong-shang Guo, Qi Wu, Long Bi, Yi-Sheng Han. Effects of Artificial Ligaments with Different Porous Structures on the Migration of BMSCs. Stem Cells International 2015; 2015: 1 doi: 10.1155/2015/702381
|
52 |
Dinorath Olvera, Binulal N. Sathy, Simon F. Carroll, Daniel J. Kelly. Modulating microfibrillar alignment and growth factor stimulation to regulate mesenchymal stem cell differentiation. Acta Biomaterialia 2017; 64: 148 doi: 10.1016/j.actbio.2017.10.010
|
53 |
Harrison T. Pajovich, Alexandra M. Brown, Andrew M. Smith, Sara K. Hurley, Jessica R. Dorilio, Nicole M. Cutrone, Ipsita A. Banerjee. Development of Multilayered Chlorogenate-Peptide Based Biocomposite Scaffolds for Potential Applications in Ligament Tissue Engineering - An <i>In Vitro</i> Study. Journal of Biomimetics, Biomaterials and Biomedical Engineering 2017; 34: 37 doi: 10.4028/www.scientific.net/JBBBE.34.37
|
54 |
Toshiaki Takahashi, Seiji Watanabe, Toshio Ito. Current and future of anterior cruciate ligament reconstruction techniques. World Journal of Meta-Analysis 2021; 9(5): 411-437 doi: 10.13105/wjma.v9.i5.411
|
55 |
O. JANOUŠKOVÁ. Synthetic Polymer Scaffolds for Soft Tissue Engineering. Physiological Research 2018; : S335 doi: 10.33549/physiolres.933983
|
56 |
Wonbin Park, Ge Gao, Dong-Woo Cho. Tissue-Specific Decellularized Extracellular Matrix Bioinks for Musculoskeletal Tissue Regeneration and Modeling Using 3D Bioprinting Technology. International Journal of Molecular Sciences 2021; 22(15): 7837 doi: 10.3390/ijms22157837
|
57 |
Shuai Chen, K. M. Faridul Hasan, Xiaoyi Liu. Bioresorbable Polymers and their Composites. 2024; : 259 doi: 10.1016/B978-0-443-18915-9.00014-8
|
58 |
Qinglin Dong, Jiangyu Cai, Haipeng Wang, Shiyi Chen, Yezhuo Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Artificial ligament made from silk protein/Laponite hybrid fibers. Acta Biomaterialia 2020; 106: 102 doi: 10.1016/j.actbio.2020.01.045
|
59 |
Cody R. Criss, M. Stephen Melton, Sergio A. Ulloa, Janet E. Simon, Brian C. Clark, Christopher R. France, Dustin R. Grooms. Rupture, reconstruction, and rehabilitation: A multi-disciplinary review of mechanisms for central nervous system adaptations following anterior cruciate ligament injury. The Knee 2021; 30: 78 doi: 10.1016/j.knee.2021.03.009
|
60 |
Alberto Ruffilli, Gherardo Pagliazzi, Enrico Ferranti, Maurizio Busacca, Diana Capannelli, Roberto Buda. Hamstring graft tibial insertion preservation versus detachment in anterior cruciate ligament reconstruction: a prospective randomized comparative study. European Journal of Orthopaedic Surgery & Traumatology 2016; 26(6): 657 doi: 10.1007/s00590-016-1812-9
|
61 |
Karuppuswamy Balasubramaniyan, Krishnamoorthy Bhoobalan, Dhasarathi Jayaraman, Shanmugam Sounderraj, K Rajendran Muthuukumar, Elango Santhini. Development and assessment of biologically compatible anterior cruciate ligament using braided ultra‐high molecular weight polyethylene. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2022; 110(6): 1306 doi: 10.1002/jbm.b.35001
|
62 |
Alexandr Aylyarov, Mikhail Tretiakov, Sarah E. Walker, Claude B. Scott, Khalid Hesham, Aditya V. Maheshwari. Intrasubstance Anterior Cruciate Ligament Injuries in the Pediatric Population. Indian Journal of Orthopaedics 2018; 52(5): 513 doi: 10.4103/ortho.IJOrtho_381_17
|
63 |
|
64 |
Chiara Rinoldi, Ewa Kijeńska‐Gawrońska, Ali Khademhosseini, Ali Tamayol, Wojciech Swieszkowski. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Advanced Healthcare Materials 2021; 10(7) doi: 10.1002/adhm.202001305
|
65 |
Diane Umuhoza, Fang Yang, Dingpei Long, Zhanzhang Hao, Jing Dai, Aichun Zhao. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomaterials Science & Engineering 2020; 6(3): 1290 doi: 10.1021/acsbiomaterials.9b01781
|
66 |
Grant Scull, Matthew B. Fisher, Ashley C. Brown. Fibrin‐based biomaterial systems to enhance anterior cruciate ligament healing. MEDICAL DEVICES & SENSORS 2021; 4(1) doi: 10.1002/mds3.10147
|
67 |
Clemens Gögele, Jens Konrad, Judith Hahn, Annette Breier, Michaela Schröpfer, Michael Meyer, Rudolf Merkel, Bernd Hoffmann, Gundula Schulze-Tanzil. Maintenance of Ligament Homeostasis of Spheroid-Colonized Embroidered and Functionalized Scaffolds after 3D Stretch. International Journal of Molecular Sciences 2021; 22(15): 8204 doi: 10.3390/ijms22158204
|
68 |
Franck Simon, Jadson Moreira-Pereira, Jean Lamontagne, Rejean Cloutier, Francine Goulet, Stéphane Chabaud. Second Generation of Tissue-Engineered Ligament Substitutes for Torn ACL Replacement: Adaptations for Clinical Applications. Bioengineering 2021; 8(12): 206 doi: 10.3390/bioengineering8120206
|
69 |
Selestina Gorgieva, Lidija F. Zemljić, Simona Strnad, Vanja Kokol. Fundamental Biomaterials: Polymers. 2018; : 179 doi: 10.1016/B978-0-08-102194-1.00009-8
|