BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Menezes GL, Knuttel FM, Stehouwer BL, Pijnappel RM, van den Bosch MA. Magnetic resonance imaging in breast cancer: A literature review and future perspectives. World J Clin Oncol 2014; 5(2): 61-70 [PMID: 24829852 DOI: 10.5306/wjco.v5.i2.61]
URL: https://www.wjgnet.com/2218-4333/full/v5/i2/61.htm
Number Citing Articles
1
Carlotta Ianniello, Guillaume Madelin, Linda Moy, Ryan Brown. A dual‐tuned multichannel bilateral RF coil for 1H/23Na breast MRI at 7 TMagnetic Resonance in Medicine 2019; 82(4): 1566 doi: 10.1002/mrm.27829
2
Viktor Puchnin, Georgiy Solomakha, Anton Nikulin, Arthur W. Magill, Anna Andreychenko, Alena Shchelokova. Metamaterial inspired wireless coil for clinical breast imagingJournal of Magnetic Resonance 2021; 322: 106877 doi: 10.1016/j.jmr.2020.106877
3
Afsaneh Alikhassi, Sona Akbari Kia, Seyedeh Nooshin Miratashi Yazdi, Hedieh Akbari, Farzin Roozafzai. Is Background Parenchymal Enhancement in Breast Magnetic Resonance Imaging Associated with Breast Cancer?International Journal of Cancer Management 2018; 11(5) doi: 10.5812/ijcm.64918
4
Tristan C F van Heijst, Debora Eschbach-Zandbergen, Nienke Hoekstra, Bram van Asselen, Jan J W Lagendijk, Helena M Verkooijen, Ruud M Pijnappel, Stephanie N de Waard, Arjen J Witkamp, Thijs van Dalen, H J G Desirée van den Bongard, Marielle E P Philippens. Supine MRI for regional breast radiotherapy: imaging axillary lymph nodes before and after sentinel-node biopsyPhysics in Medicine & Biology 2017; 62(16): 6746 doi: 10.1088/1361-6560/aa759f
5
Temel Fatih Yilmaz, Hafize Otcu, Lutfullah Sari, Zuhal Gucin, Mehmet Ali Gultekin, Fatma Celik Yabul, Huseyin Toprak, Seyma Yildiz. Comparison of MRI Features of Invasive Pleomorphic and Classical Lobular Carcinoma: Differentiation Is Possible?Indian Journal of Surgery 2022; 84(S3): 722 doi: 10.1007/s12262-021-03228-9
6
N. Sasirekha, Jayakumar Karuppaiah, Himanshu Shekhar, N. Naga Saranya. Breast cancer detection using Histopathology Image with Mini-Batch Stochastic Gradient Descent and Convolutional Neural NetworkJournal of Intelligent & Fuzzy Systems 2023; 45(3): 4651 doi: 10.3233/JIFS-231480
7
Ivan Kosik, Muriel Brackstone, Anat Kornecki, Astrid Chamson-Reig, Philip Wong, Morteza Heydari Araghi, Jeff Carson, Alexander A. Oraevsky, Lihong V. Wang. Comparison of breast tumor diameter by intraoperative photoacoustic screening, magnetic resonance imaging and pathologyPhotons Plus Ultrasound: Imaging and Sensing 2019 2019; : 90 doi: 10.1117/12.2509795
8
Xiaoping Yang, Mengshi Dong, Shu Li, Ruimei Chai, Zheng Zhang, Nan Li, Lina Zhang. Diffusion-weighted imaging or dynamic contrast-enhanced curve: a retrospective analysis of contrast-enhanced magnetic resonance imaging–based differential diagnoses of benign and malignant breast lesionsEuropean Radiology 2020; 30(9): 4795 doi: 10.1007/s00330-020-06883-w
9
Kushangi Atrey, Bikesh Kumar Singh, Abhijit Roy, Narendra Kuber Bodhey. Real‐time automated segmentation of breast lesions using CNN‐based deep learning paradigm: Investigation on mammogram and ultrasoundInternational Journal of Imaging Systems and Technology 2022; 32(4): 1084 doi: 10.1002/ima.22690
10
Rossano Girometti, Adriana Nitti, Michele Lorenzon, Franco Greco, Viviana Londero, Chiara Zuiani. Comparison between an abbreviated and full MRI protocol for detecting additional disease when doing breast cancer stagingJournal of Magnetic Resonance Imaging 2019; 49(7) doi: 10.1002/jmri.26339
11
Niketa Chotai, Supriya Kulkarni. Breast Imaging Essentials2020; : 27 doi: 10.1007/978-981-15-1412-8_5
12
S.A. Chikarmane, S.H. Tirumani, S.A. Howard, J.P. Jagannathan, P.J. DiPiro. Metastatic patterns of breast cancer subtypes: What radiologists should know in the era of personalized cancer medicineClinical Radiology 2015; 70(1): 1 doi: 10.1016/j.crad.2014.08.015
13
Si-Wa Chan, Wei-Hsuan Hu, Yen-Chieh Ouyang, Hsien-Chi Su, Chin-Yao Lin, Yung-Chieh Chang, Chia-Chun Hsu, Kuan-Wen Chen, Chia-Chen Liu, Sou-Hsin Chien. Quantitative Measurement of Breast Tumors Using Intravoxel Incoherent Motion (IVIM) MR ImagesJournal of Personalized Medicine 2021; 11(7): 656 doi: 10.3390/jpm11070656
14
Ivan Kosik, Muriel Brackstone, Anat Kornecki, Astrid Chamson-Reig, Philip Wong, Jeffrey J.L. Carson. Lipid-weighted intraoperative photoacoustic tomography of breast tumors: Volumetric comparison to preoperative MRIPhotoacoustics 2020; 18: 100165 doi: 10.1016/j.pacs.2020.100165
15
Alessia Orlando, Mariangela Dimarco, Roberto Cannella, Tommaso Vincenzo Bartolotta. Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics: State of artArtificial Intelligence in Medical Imaging 2020; 1(1): 6-18 doi: 10.35711/aimi.v1.i1.6
16
Diomidis Botsikas, Anastasia Kalovidouri, Minerva Becker, Michele Copercini, Dahila Amal Djema, Alexandre Bodmer, Sindy Monnier, Christoph D. Becker, Xavier Montet, Benedicte M. A. Delattre, Osman Ratib, Valentina Garibotto, Claire Tabouret-Viaud. Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer stagingEuropean Radiology 2016; 26(7): 2297 doi: 10.1007/s00330-015-4054-z
17
Valeria Selvi, Jacopo Nori, Icro Meattini, Giulio Francolini, Noemi Morelli, Diego Di Benedetto, Giulia Bicchierai, Federica Di Naro, Maninderpal Kaur Gill, Lorenzo Orzalesi, Luis Sanchez, Tommaso Susini, Simonetta Bianchi, Lorenzo Livi, Vittorio Miele. Role of Magnetic Resonance Imaging in the Preoperative Staging and Work-Up of Patients Affected by Invasive Lobular Carcinoma or Invasive Ductolobular CarcinomaBioMed Research International 2018; 2018: 1 doi: 10.1155/2018/1569060
18
M.T. Ramli Hamid, N. Ab Mumin, S. Abdul Hamid, M.S. Ahmad Saman, K. Rahmat. Abbreviated breast magnetic resonance imaging (MRI) or digital breast tomosynthesis for breast cancer detection in dense breasts? A retrospective preliminary study with comparable resultsClinical Radiology 2024; 79(4): e524 doi: 10.1016/j.crad.2023.12.016
19
Madan Kumar Sharma, Mithilesh Kumar, J. P. Saini, Deepak Gangwar, Binod K. Kanaujia, Satya P. Singh, Aime' Lay Ekuakille. Experimental Investigation of the Breast Phantom for Tumor Detection Using Ultra-Wide Band–MIMO Antenna Sensor (UMAS) ProbeIEEE Sensors Journal 2020; 20(12): 6745 doi: 10.1109/JSEN.2020.2977147
20
Claire Tabouret-Viaud, Ismini Mainta, Valentina Garibotto, Diomidis Botsikas, Bénédicte M. A. Delattre, Osman Ratib. PET/MRI in Oncology2018; : 261 doi: 10.1007/978-3-319-68517-5_14
21
Erik Verburg, Carla H. van Gils, Bas H.M. van der Velden, Marije F. Bakker, Ruud M. Pijnappel, Wouter B. Veldhuis, Kenneth G.A. Gilhuijs. Validation of Combined Deep Learning Triaging and Computer-Aided Diagnosis in 2901 Breast MRI Examinations From the Second Screening Round of the Dense Tissue and Early Breast Neoplasm Screening TrialInvestigative Radiology 2023; 58(4): 293 doi: 10.1097/RLI.0000000000000934
22
Tristan C F van Heijst, Bram van Asselen, Ruud M Pijnappel, Marissa Cloos-van Balen, Jan J W Lagendijk, Desirée van den Bongard, Mariëlle E P Philippens. MRI sequences for the detection of individual lymph nodes in regional breast radiotherapy planningThe British Journal of Radiology 2016; 89(1063): 20160072 doi: 10.1259/bjr.20160072
23
Siva Teja Kakileti, Geetha Manjunath. Artificial Intelligence in Medicine2021; : 1 doi: 10.1007/978-3-030-58080-3_251-1
24
Claire Tabouret-Viaud, Diomidis Botsikas, Bénédicte M.A. Delattre, Ismini Mainta, Gaël Amzalag, Olivier Rager, Vincent Vinh-Hung, Raymond Miralbell, Osman Ratib. PET/MR in Breast CancerSeminars in Nuclear Medicine 2015; 45(4): 304 doi: 10.1053/j.semnuclmed.2015.03.003
25
Mona Tan. Lobar Approach to Breast Ultrasound2018; : 307 doi: 10.1007/978-3-319-61681-0_18
26
Shimaa Mahdy, Omnia Hamdy, Mohammed A. Hassan, Mohamed A. A. Eldosoky. A modified source-detector configuration for the discrimination between normal and diseased human breast based on the continuous-wave diffuse optical imaging approach: a simulation studyLasers in Medical Science 2022; 37(3): 1855 doi: 10.1007/s10103-021-03440-9
27
Michael A. Pinkert, Lonie R. Salkowski, Patricia J. Keely. Review of quantitative multiscale imaging of breast cancerJournal of Medical Imaging 2018; 5(01): 1 doi: 10.1117/1.JMI.5.1.010901
28
S. Dejust. L’exploration axillaire : un standard du bilan préthérapeutiqueOncologie 2019; 21(1-4): 05 doi: 10.3166/onco-2019-0031
29
Reham Khalil, Noha Mohamed Osman, Nivine Chalabi, Enas Abdel Ghany. Unenhanced breast MRI: could it replace dynamic breast MRI in detecting and characterizing breast lesions?Egyptian Journal of Radiology and Nuclear Medicine 2020; 51(1) doi: 10.1186/s43055-019-0103-y
30
Georgios K Dimitriadis, Anna Angelousi, Martin O Weickert, Harpal S Randeva, Gregory Kaltsas, Ashley Grossman. Paraneoplastic endocrine syndromesEndocrine-Related Cancer 2017; 24(6): R173 doi: 10.1530/ERC-17-0036
31
Yingying Yuan, Ming Xu, Yi Ren, Lili He, Jiejie Chen, Li Sun, Min Tang. Clinical Value of Contrast-Enhanced Ultrasound in Breast Cancer DiagnosisComputational and Mathematical Methods in Medicine 2022; 2022: 1 doi: 10.1155/2022/2017026
32
Mohammad Mehedi Hasan, Parvathy Mohanan, Shabana Bibi, Catherine Babu, Yohan Joe Roy, Ashlyn Mathews, Govinda Khatri, Stavros P. Papadakos. Breast Cancer Treatment: An Interdisciplinary ApproachInterdisciplinary Cancer Research 2023; 7: 69 doi: 10.1007/16833_2023_176
33
C. Sahaya Pushpa Sarmila Star, T.M. Inbamalar, A. Milton. Segmentation of breast lesion using fuzzy thresholding and deep learningComputers in Biology and Medicine 2025; 184: 109406 doi: 10.1016/j.compbiomed.2024.109406
34
S. V. S. Deo, Ashutosh Mishra, Chitresh Kumar, Sandeep Bhoriwal. Breast Oncoplasty and Reconstruction2023; : 33 doi: 10.1007/978-981-99-5536-7_5
35
Jong Yoon Lee, Mijung Jang, Sun Mi Kim, Bo La Yun, Ja Yoon Jang, Hye Shin Ahn. Preoperative magnetic resonance imaging characteristics of oval circumscribed fast enhancing lesions in patients with newly diagnosed breast cancerMedicine 2018; 97(19): e0704 doi: 10.1097/MD.0000000000010704
36
Nils Martin Bruckmann, Lino M. Sawicki, Julian Kirchner, Ole Martin, Lale Umutlu, Ken Herrmann, Wolfgang Fendler, Ann-Kathrin Bittner, Oliver Hoffmann, Svjetlana Mohrmann, Frederic Dietzel, Marc Ingenwerth, Benedikt M. Schaarschmidt, Yan Li, Bernd Kowall, Andreas Stang, Gerald Antoch, Christian Buchbender. Prospective evaluation of whole-body MRI and 18F-FDG PET/MRI in N and M staging of primary breast cancer patientsEuropean Journal of Nuclear Medicine and Molecular Imaging 2020; 47(12): 2816 doi: 10.1007/s00259-020-04801-2
37
Brian M. Moloney, Declan O’Loughlin, Sami Abd Elwahab, Michael J. Kerin. Breast Cancer Detection—A Synopsis of Conventional Modalities and the Potential Role of Microwave ImagingDiagnostics 2020; 10(2): 103 doi: 10.3390/diagnostics10020103
38
Shaimaa Mostafa, Roaa Mubarak, Mohamed El-Adawy, Amr F. Ibrahim, Mohamed M. Gomaa, Rasha M. Kamal. Breast Cancer Detection Using Polynomial Fitting Applied on Contrast Enhanced Spectral Mammography2019 International Conference on Innovative Trends in Computer Engineering (ITCE) 2019; : 11  doi: 10.1109/ITCE.2019.8646379
39
Dedy Hermansyah, Naufal Nandita Firsty. Breast Cancer2022; : 83 doi: 10.36255/exon-publications-breast-cancer-breast-imaging
40
Afsaneh Alikhassi, Hedieh Akbari, Seyedeh Nooshin Miratashi Yazdi, Sona Akbari Kia, Farzin Roozafzai. Is Breast Background Parenchymal Enhancement on MRI Related to BI-RADS Score and Follow-Up Rate?Advances in Breast Cancer Research 2018; 7(01): 15 doi: 10.4236/abcr.2018.71002
41
Maria Antonietta Mazzei, Letizia Di Giacomo, Alfonso Fausto, Francesco Gentili, Francesco Giuseppe Mazzei, Luca Volterrani. Efficacy of Second-Look Ultrasound with MR Coregistration for Evaluating Additional Enhancing Lesions of the Breast: Review of the LiteratureBioMed Research International 2018; 2018: 1 doi: 10.1155/2018/3896946
42
Bianca M. den Dekker, Marije F. Bakker, Stéphanie V. de Lange, Wouter B. Veldhuis, Paul J. van Diest, Katya M. Duvivier, Marc B. I. Lobbes, Claudette E. Loo, Ritse M. Mann, Evelyn M. Monninkhof, Jeroen Veltman, Ruud M. Pijnappel, Carla H. van Gils, C. H. van Gils, M. F. Bakker, S. V. de Lange, S. G. A. Veenhuizen, W. B. Veldhuis, R. M. Pijnappel, M. J. Emaus, P. H. M. Peeters, E. M. Monninkhof, M. A. Fernandez-Gallardo, W. P. T. M. Mali, M. A. A. J. van den Bosch, P. J. van Diest, R. M. Mann, R. Mus, M. W. Imhof-Tas, N. Karssemeijer, C. E. Loo, P. K. de Koekkoek-Doll, H. A. O. Winter-Warnars, R. H. C. Bisschops, M. C. J. M. Kock, R. K. Storm, P. H. M. van der Valk, M. B. I. Lobbes, S. Gommers, M. D. F. de Jong, M. J. C. M. Rutten, K. M. Duvivier, P. de Graaf, J. Veltman, R. L. J. H. Bourez, H. J. de Koning. Reducing False-Positive Screening MRI Rate in Women with Extremely Dense Breasts Using Prediction Models Based on Data from the DENSE TrialRadiology 2021; 301(2): 283 doi: 10.1148/radiol.2021210325
43
Bradley D. Allen, Mark L. Schiebler, Gregor Sommer, Hans-Ulrich Kauczor, Juergen Biederer, Timothy J. Kruser, James C. Carr, Gordon Hazen. Cost-effectiveness of lung MRI in lung cancer screeningEuropean Radiology 2020; 30(3): 1738 doi: 10.1007/s00330-019-06453-9
44
J. A. Garcia-Saenz, B. Bermejo, L. G. Estevez, A. G. Palomo, X. Gonzalez-Farre, M. Margeli, S. Pernas, S. Servitja, C. A. Rodriguez, E. Ciruelos. SEOM clinical guidelines in early-stage breast cancer 2015Clinical and Translational Oncology 2015; 17(12): 939 doi: 10.1007/s12094-015-1427-3
45
Carlos Canelo-Aybar, Alvaro Taype-Rondan, Jessica Hanae Zafra-Tanaka, David Rigau, Axel Graewingholt, Annette Lebeau, Elsa Pérez Gómez, Paolo Giorgi Rossi, Miranda Langendam, Margarita Posso, Elena Parmelli, Zuleika Saz-Parkinson, Pablo Alonso-Coello. Preoperative breast magnetic resonance imaging in patients with ductal carcinoma in situ: a systematic review for the European Commission Initiative on Breast Cancer (ECIBC)European Radiology 2021; 31(8): 5880 doi: 10.1007/s00330-021-07873-2
46
Michelle Leemans, Pierre Bauër, Vincent Cuzuel, Etienne Audureau, Isabelle Fromantin. Volatile Organic Compounds Analysis as a Potential Novel Screening Tool for Breast Cancer: A Systematic ReviewBiomarker Insights 2022; 17 doi: 10.1177/11772719221100709
47
Bijay P. Chhetri, Alokita Karmakar, Anindya Ghosh. Recent Advancements in Ln‐Ion‐Based Upconverting Nanomaterials and Their Biological ApplicationsParticle & Particle Systems Characterization 2019; 36(8) doi: 10.1002/ppsc.201900153
48
Siva Teja Kakileti, Geetha Manjunath. Artificial Intelligence in Medicine2022; : 1301 doi: 10.1007/978-3-030-64573-1_251
49
M G Davey, M S Davey, É J Ryan, M R Boland, P F McAnena, A J Lowery, M J Kerin. Is radiomic MRI a feasible alternative to OncotypeDX® recurrence score testing? A systematic review and meta-analysisBJS Open 2021; 5(5) doi: 10.1093/bjsopen/zrab081
50
Nure Alam Chowdhury, Lulu Wang, Linxia Gu, Mehmet Kaya. Exploring the Potential of Sensing for Breast Cancer DetectionApplied Sciences 2023; 13(17): 9982 doi: 10.3390/app13179982
51
Afsaneh Alikhassi, Xuan Li, Frederick Au, Supriya Kulkarni, Sandeep Ghai, Grant Allison, Vivianne Freitas. False-positive incidental lesions detected on contrast-enhanced breast MRI: clinical and imaging featuresBreast Cancer Research and Treatment 2023; 198(2): 321 doi: 10.1007/s10549-023-06861-y
52
Summrina Kanwal Wajid, Amir Hussain, Kaizhu Huang. Three-Dimensional Local Energy-Based Shape Histogram (3D-LESH): A Novel Feature Extraction TechniqueExpert Systems with Applications 2018; 112: 388 doi: 10.1016/j.eswa.2017.11.057
53
Natasa Prvulovic Bunovic, Olivera Sveljo, Dusko Kozic, Jasmina Boban. Is Elevated Choline on Magnetic Resonance Spectroscopy a Reliable Marker of Breast Lesion Malignancy?Frontiers in Oncology 2021; 11 doi: 10.3389/fonc.2021.610354
54
Fatma Nur Soylu Boy, Kamber Goksu, Iksan Tasdelen. Association between lesion enhancement and breast cancer in contrast-enhanced spectral mammographyActa Radiologica 2023; 64(1): 74 doi: 10.1177/02841851211060021
55
Amy L. Kerger, Tom A. Stamatis. Contributions and Controversies of Preoperative DCE-Breast MRICurrent Radiology Reports 2016; 4(4) doi: 10.1007/s40134-016-0143-2
56
Shuwen Liu, Tirusew Tegafaw, Huan Yue, Son Long Ho, Soyeon Kim, Ji Ae Park, Ahrum Baek, Mohammad Yaseen Ahmad, So Hyeon Yang, Dong Wook Hwang, Seungho Kim, Abdullah Khamis Ali Al Saidi, Dejun Zhao, Ying Liu, Sung-Wook Nam, Kwon Seok Chae, Yongmin Chang, Gang Ho Lee. Paramagnetic ultrasmall Ho2O3 and Tm2O3 nanoparticles: characterization of r2 values and in vivo T2 MR images at a 3.0 T MR fieldMaterials Advances 2022; 3(14): 5857 doi: 10.1039/D2MA00322H
57
Erik Verburg, Carla H. van Gils, Marije F. Bakker, Max A. Viergever, Ruud M. Pijnappel, Wouter B. Veldhuis, Kenneth G. A. Gilhuijs. Computer-Aided Diagnosis in Multiparametric Magnetic Resonance Imaging Screening of Women With Extremely Dense Breasts to Reduce False-Positive DiagnosesInvestigative Radiology 2020; 55(7): 438 doi: 10.1097/RLI.0000000000000656
58
Gunjan Rajput, Shashank Agrawal, Kunika Biyani, Santosh Kumar Vishvakarma. Early breast cancer diagnosis using cogent activation function‐based deep learning implementation on screened mammogramsInternational Journal of Imaging Systems and Technology 2022; 32(4): 1101 doi: 10.1002/ima.22701
59
Wei Huang. Breast MRIAdvances in Magnetic Resonance Technology and Applications 2022; 5: 425 doi: 10.1016/B978-0-12-822729-9.00007-2
60
Gisela L. G. Menezes, Bertine L. Stehouwer, Dennis W. J. Klomp, Tijl A. van der Velden, Maurice A. A. J. van den Bosch, Floortje M. Knuttel, Vincent O. Boer, Wybe J. M. van der Kemp, Peter R. Luijten, Wouter B. Veldhuis. Dynamic contrast-enhanced breast MRI at 7T and 3T: an intra-individual comparison studySpringerPlus 2016; 5(1) doi: 10.1186/s40064-015-1654-7
61
R Rupa, R Thushara, S Swathigha, R Athira, N Meena, Mathew P Cherian. Diffusion weighted imaging in breast cancer – Can it be a noninvasive predictor of nuclear grade?Indian Journal of Radiology and Imaging 2020; 30(01): 13 doi: 10.4103/ijri.IJRI_97_19
62
Anya Romanoff, Hank Schmidt, Matthew Mcmurray, Christina Weltz, Monica Schwartzman, Kathryn Friedman, Laurie Margolies, Elisa Port. Who Is Ordering MRIs in Newly Diagnosed Breast Cancer Patients?The American Surgeon™ 2018; 84(3): 351 doi: 10.1177/000313481808400317
63
Sasan Partovi, David Sin, Ziang Lu, Leah Sieck, Holly Marshall, Ramya Pham, Donna Plecha. Fast MRI breast cancer screening – Ready for prime timeClinical Imaging 2020; 60(2): 160 doi: 10.1016/j.clinimag.2019.10.013
64
Eunjin Kim, Hwan-ho Cho, Eunsook Ko, Hyunjin Park. Generative Adversarial Network with Local Discriminator for Synthesizing Breast Contrast-Enhanced MRI2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) 2021; : 1 doi: 10.1109/BHI50953.2021.9508579
65
Joana Reis, Jonas Christoffer Lindstrøm, Joao Boavida, Kjell-Inge Gjesdal, Daehoon Park, Nazli Bahrami, Manouchehr Seyedzadeh, Woldegabriel A. Melles, Torill Sauer, Jürgen Geisler, Jonn Terje Geitung. Accuracy of breast MRI in patients receiving neoadjuvant endocrine therapy: comprehensive imaging analysis and correlation with clinical and pathological assessmentsBreast Cancer Research and Treatment 2020; 184(2): 407 doi: 10.1007/s10549-020-05852-7
66
Nasrin Ahmadinejad, Fahimeh Azizinik, Pershang Khosravi, Ala Torabi, Amirhassan Mohajeri, Arvin Arian, Pranshu Sahgal. Evaluation of Features in Probably Benign and Malignant Nonmass Enhancement in Breast MRIInternational Journal of Breast Cancer 2024; 2024: 1 doi: 10.1155/2024/6661849
67
Tasneem Osama Mohamed, Moustafa Abdel Kader, Yasser Mohamed Abdel Gawwad, Shaimaa Sh. El Sharkawy, Sara Mahmoud Ragaee. MR diffusion-weighted imaging precision in BIRADS downstagingEgyptian Journal of Radiology and Nuclear Medicine 2024; 55(1) doi: 10.1186/s43055-024-01276-1
68
Xiaochen Su, Shaokai Wang. Is Magnetic Resonance Imaging (MRI) Still a Gold Standard to Detect Breast Cancer: A Meta-analysisCurrent Medical Imaging Formerly Current Medical Imaging Reviews 2023; 19(14) doi: 10.2174/1573405619666230206162504
69
A. Prabhakara Rao, Neeraj Bokde, Saugata Sinha. Photoacoustic Imaging for Management of Breast Cancer: A Literature Review and Future PerspectivesApplied Sciences 2020; 10(3): 767 doi: 10.3390/app10030767
70
Qiyuan Hu, Heather M. Whitney, Maryellen L. Giger. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRIScientific Reports 2020; 10(1) doi: 10.1038/s41598-020-67441-4
71
Brittany Z. Dashevsky, Timothy D'Alfonso, Elizabeth J. Sutton, Ashley Giambrone, Eric Aronowitz, Elizabeth A. Morris, Krishna Juluru, Douglas J. Ballon. The Potential of High Resolution Magnetic Resonance Microscopy in the Pathologic Analysis of Resected Breast and Lymph TissueScientific Reports 2015; 5(1) doi: 10.1038/srep17435
72
Megan E Speer, Monica L Huang, Basak E Dogan, Beatriz E Adrada, Rosalind P Candelaria, Kenneth R Hess, Palita Hansakul, Wei T Yang, Gaiane M Rauch. High risk breast lesions identified on MRI-guided vacuum-assisted needle biopsy: outcome of surgical excision and imaging follow-upThe British Journal of Radiology 2018; 91(1090): 20180300 doi: 10.1259/bjr.20180300
73
Hale Aydin, Bahar Guner, Isil Esen Bostanci, Zarife Melda Bulut, Bilgin Kadri Aribas, Lutfi Dogan, Mehmet Ali Gulcelik. Is there any relationship between adc values of diffusion-weighted imaging and the histopathological prognostic factors of invasive ductal carcinoma?The British Journal of Radiology 2018; 91(1084) doi: 10.1259/bjr.20170705
74
Mukesh Kumar Bind, Sajai Vir Singh, Kaushal Kumar Nigam. Design and Investigation of the DM- PC-TFET-Based Biosensor for Breast Cancer Cell DetectionTransactions on Electrical and Electronic Materials 2023; 24(5): 381 doi: 10.1007/s42341-023-00453-9
75
Ankit Kumar Gupta, Praveen Kumar Rao, Rajan Mishra. Circular shape MIMO antenna sensor for breast tumor detectionFrequenz 2022; 76(9-10): 521 doi: 10.1515/freq-2021-0206
76
Belgin Karan, Aysin Pourbagher, Nese Torun. Diffusion‐weighted imaging and 18F‐fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer: Correlation of the apparent diffusion coefficient and maximum standardized uptake values with prognostic factorsJournal of Magnetic Resonance Imaging 2016; 43(6): 1434 doi: 10.1002/jmri.25112
77
Manus J. Donahue, Paula M. C. Donahue, R. Sky Jones, Maria Garza, Chelsea Lee, Niral J. Patel, Andrea Cooper, Jill B. De Vis, Ingrid Meszoely, Rachelle Crescenzi. In vivo lymph node CEST‐Dixon MRI in breast cancer patients with metastatic lymph node involvementMagnetic Resonance in Medicine 2024; 91(2): 670 doi: 10.1002/mrm.29858
78
Jaison D, Meher Abhinav E, Asnit Gangwar, Prasad Nand Kishore, Gopalakrishnan Chandrasekaran, Mothilal M. Effect of Gd3+ substitution on proton relaxation and magnetic hyperthermia efficiency of cobalt ferrite nanoparticlesMaterials Research Express 2020; 7(6): 064009 doi: 10.1088/2053-1591/ab9378
79
Fariborz Faeghi, Banafsheh Baniasadipour, Jalal Jalalshokouhi. Comparative Investigation of Single Voxel Magnetic Resonance Spectroscopy and Dynamic Contrast Enhancement MR Imaging in Differentiation of Benign and Malignant Breast Lesions in a Sample of Iranian WomenAsian Pacific Journal of Cancer Prevention 2016; 16(18): 8335 doi: 10.7314/APJCP.2015.16.18.8335
80
Lamiaa Mohamed Bassam Hashem, Yasmine Ahmed Elsayed Sawy, Rasha Mohamed Kamal, Soha Mohamed Ahmed, Dalia Salaheldin elmesidy. The additive role of dynamic contrast-enhanced and diffusion-weighted MR imaging in preoperative staging of breast cancerEgyptian Journal of Radiology and Nuclear Medicine 2021; 52(1) doi: 10.1186/s43055-021-00411-6
81
Amer Alaref, Abdallah Hassan, Rajan Sharma Kandel, Rohi Mishra, Jeevan Gautam, Nusrat Jahan. Magnetic Resonance Imaging Features in Different Types of Invasive Breast Cancer: A Systematic Review of the LiteratureCureus 2021;  doi: 10.7759/cureus.13854
82
Christiane K. Kuhl, Annika Keulers, Kevin Strobel, Hannah Schneider, Nadine Gaisa, Simone Schrading. Not all false positive diagnoses are equal: On the prognostic implications of false-positive diagnoses made in breast MRI versus in mammography / digital tomosynthesis screeningBreast Cancer Research 2018; 20(1) doi: 10.1186/s13058-018-0937-7
83
Ruben Cohen-Hallaleh, Mary T. Rickard, Elgene Lim, Wendy A. Raymond, Davendra Segara, Lauren Arnold, Andrew H. S. Lee, Fernando Schmitt, Andrew S. Field. The International Academy of Cytology Yokohama System for Reporting Breast Fine Needle Aspiration Biopsy Cytopathology2020; : 175 doi: 10.1007/978-3-030-26883-1_11
84
Hanjie Wang, Lin Zhao, Huiyue You, Huiling Wu, Qingliang Zhao, Xin Dong, Shengchuang Bai, Hongsen He, Jun Dong. Dual-wavelength, nanosecond, miniature Raman laser enables efficient photoacoustic differentiation of water and lipidAPL Photonics 2024; 9(9) doi: 10.1063/5.0216255
85
X. Liang, J. Yu, B. Wen, J. Xie, Q. Cai, Q. Yang. MRI and FDG-PET/CT based assessment of axillary lymph node metastasis in early breast cancer: a meta-analysisClinical Radiology 2017; 72(4): 295 doi: 10.1016/j.crad.2016.12.001
86
Si-Wa Chan, Yung-Chieh Chang, Po-Wen Huang, Yen-Chieh Ouyang, Yu-Tzu Chang, Ruey-Feng Chang, Jyh-Wen Chai, Clayton Chi-Chang Chen, Hsian-Min Chen, Chein-I. Chang, Chin-Yao Lin. Breast Tumor Detection and Classification Using Intravoxel Incoherent Motion Hyperspectral Imaging TechniquesBioMed Research International 2019; 2019: 1 doi: 10.1155/2019/3843295
87
Lucia Veverková, Ľubica Löwová, Ivan Šišola. The radiologist´s role in the care of woman with breast cancerOnkologie 2019; 13(5): 215 doi: 10.36290/xon.2019.041
88
Eunjin Kim, Hwan-Ho Cho, Junmo Kwon, Young-Tack Oh, Eun Sook Ko, Hyunjin Park. Tumor-Attentive Segmentation-Guided GAN for Synthesizing Breast Contrast-Enhanced MRI Without Contrast AgentsIEEE Journal of Translational Engineering in Health and Medicine 2023; 11: 32 doi: 10.1109/JTEHM.2022.3221918
89
EVELYN M. GARCIA, JAMES CROWLEY, CATHERINE HAGAN, LISA L. ATKINSON. Evolution of Imaging in Breast CancerClinical Obstetrics & Gynecology 2016; 59(2): 322 doi: 10.1097/GRF.0000000000000193
90
Nan Wang, Yibin Xie, Zhaoyang Fan, Sen Ma, Rola Saouaf, Yu Guo, Stephen L. Shiao, Anthony G. Christodoulou, Debiao Li. Five‐dimensional quantitative low‐dose Multitasking dynamic contrast‐ enhanced MRI: Preliminary study on breast cancerMagnetic Resonance in Medicine 2021; 85(6): 3096 doi: 10.1002/mrm.28633
91
Corrado Caiazzo, Rosa Di Micco, Emanuela Esposito, Viviana Sollazzo, Maria Cervotti, Carlo Varelli, Pietro Forestieri, Gennaro Limite. The role of MRI in predicting Ki-67 in breast cancer: preliminary results from a prospective studyTumori Journal 2018; 104(6): 438 doi: 10.5301/tj.5000619
92
Ketan Tamhane, Akanksha Jadhav. Busting Breast Cancer Myths: A Deep Dive into Epidemiology, Risk Factors and Effective ManagementInternational Journal of Innovative Science and Research Technology (IJISRT) 2024; : 658 doi: 10.38124/ijisrt/IJISRT24MAR416
93
Kehinde Aruleba, George Obaido, Blessing Ogbuokiri, Adewale Oluwaseun Fadaka, Ashwil Klein, Tayo Alex Adekiya, Raphael Taiwo Aruleba. Applications of Computational Methods in Biomedical Breast Cancer Imaging Diagnostics: A ReviewJournal of Imaging 2020; 6(10): 105 doi: 10.3390/jimaging6100105
94
Nashwan Alromema, Asif Hassan Syed, Tabrej Khan. A Hybrid Machine Learning Approach to Screen Optimal Predictors for the Classification of Primary Breast Tumors from Gene Expression Microarray DataDiagnostics 2023; 13(4): 708 doi: 10.3390/diagnostics13040708
95
M.T. Ramli Hamid, N. Ab Mumin, Y.V. Wong, W.Y. Chan, F.I. Rozalli, K. Rahmat. The effectiveness of an ultrafast breast MRI protocol in the differentiation of benign and malignant breast lesionsClinical Radiology 2023; 78(6): 444 doi: 10.1016/j.crad.2023.03.006
96
Selma Metzner, Gerd Wübbeler, Christoph Kolbitsch, Clemens Elster. A comparison of two data analysis approaches for quantitative magnetic resonance imagingMeasurement Science and Technology 2022; 33(7): 075401 doi: 10.1088/1361-6501/ac5fff
97
Andrew Murphy, The Radswiki. Radiopaedia.org2010;  doi: 10.53347/rID-12182
98
Quoc Duy Vo, Thierry Molteni, Patrique Oliveira Santos Patrique, Elodie Niasme, Laura Haefliger. Incidental breast lesion on chest CT scan: a reviewObstetrics & Gynecology International Journal 2022; 13(1): 15 doi: 10.15406/ogij.2022.13.00619
99
Ya Zhang, Zheng Li, Zhongqiang Li, Huaizhi Wang, Dinkar Regmi, Jian Zhang, Jiming Feng, Shaomian Yao, Jian Xu. Employing Raman Spectroscopy and Machine Learning for the Identification of Breast CancerBiological Procedures Online 2024; 26(1) doi: 10.1186/s12575-024-00255-0
100
Mohammed Tareq Mutar, Mustafa Majid Hameed, Mohammed Saleh Goyani, Aqeel Shakir Mahmood, Abo-Alhasan Hammed Obaid. Breast Cancer - Evolving Challenges and Next Frontiers2021;  doi: 10.5772/intechopen.97570
101
Arif Mohd. Kamal, Tushar Sakorikar, Uttam M. Pal, Hardik J. Pandya. Engineering Approaches for Breast Cancer Diagnosis: A ReviewIEEE Reviews in Biomedical Engineering 2023; 16: 687 doi: 10.1109/RBME.2022.3181700
102
John Stroud, Yu Hao, Tim S. Read, Janusz H. Hankiewicz, Pawel Bilski, Krzysztof Klodowski, Jared M. Brown, Keegan Rogers, Josh Stoll, Robert E. Camley, Zbigniew Celinski, Marek Przybylski. Magnetic particle based MRI thermometry at 0.2 T and 3 TMagnetic Resonance Imaging 2023; 100: 43 doi: 10.1016/j.mri.2023.03.004
103
Bhavika K. Patel, Naziya Samreen, Yuxiang Zhou, Jun Chen, Kathy Brandt, Richard Ehman, Kay Pepin. MR Elastography of the Breast: Evolution of Technique, Case Examples, and Future DirectionsClinical Breast Cancer 2021; 21(1): e102 doi: 10.1016/j.clbc.2020.08.005
104
G. Divya Deepak, Subraya Krishna Bhat. A comparative study of breast tumour detection using a semantic segmentation network coupled with different pretrained CNNsComputer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2024; 12(1) doi: 10.1080/21681163.2024.2373996
105
Vanda F. Torous, Nancy A. Resteghini, Jordana Phillips, Vandana Dialani, Priscilla J. Slanetz, Stuart J. Schnitt, Gabrielle M. Baker. Histopathologic Correlates of Nonmass Enhancement Detected by Breast Magnetic Resonance ImagingArchives of Pathology & Laboratory Medicine 2021; 145(10): 1264 doi: 10.5858/arpa.2020-0266-OA
106
Feng Ao, Yi Yan, Zi-Li Zhang, Sheng Li, Wen-Jing Li, Guang-Bin Chen. The value of dynamic contrast-enhanced magnetic resonance imaging combined with apparent diffusion coefficient in the differentiation of benign and malignant diseases of the breastActa Radiologica 2022; 63(7): 891 doi: 10.1177/02841851211024002
107
Ebru Salmanoglu, Kimberly Klinger, Chandni Bhimani, Alexander Sevrukov, Mathew L. Thakur. Advanced approaches to imaging primary breast cancer: an updateClinical and Translational Imaging 2019; 7(6): 381 doi: 10.1007/s40336-019-00346-z
108
Yanyu Zhao, Bowen Song, Ming Wang, Yang Zhao, Yubo Fan. Halftone spatial frequency domain imaging enables kilohertz high-speed label-free non-contact quantitative mapping of optical properties for strongly turbid mediaLight: Science & Applications 2021; 10(1) doi: 10.1038/s41377-021-00681-9
109
Xiuxiu He, Byoungkoo Lee, Yi Jiang. Extracellular matrix in cancer progression and therapyMedical Review 2022; 2(2): 125 doi: 10.1515/mr-2021-0028
110
Roman Romanov, Konstantin Ladutenko, Mikhail Zubkov, Anna Andreychenko. Method of moments for relaxation-based signal separation in magnetic resonance breast cancer detection2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON) 2022; : 630 doi: 10.1109/SIBIRCON56155.2022.10017024
111
Sergio J. Sanabria, Marga B. Rominger, Orcun Goksel. Speed-of-Sound Imaging Based on Reflector DelineationIEEE Transactions on Biomedical Engineering 2019; 66(7): 1949 doi: 10.1109/TBME.2018.2881302
112
Enas Abu Abeelh, Zain AbuAbeileh. Comparative Effectiveness of Mammography, Ultrasound, and MRI in the Detection of Breast Carcinoma in Dense Breast Tissue: A Systematic ReviewCureus 2024;  doi: 10.7759/cureus.59054
113
Dževad Belkić, Karen Belkić. Mathematically-optimized magnetic resonance spectroscopy in breast cancer diagnostics: implications for personalized cancer medicineJournal of Mathematical Chemistry 2016; 54(1): 186 doi: 10.1007/s10910-015-0556-9
114
Or Herman-Saffar, Zvi Boger, Shai Libson, David Lieberman, Raphael Gonen, Yehuda Zeiri. Early non-invasive detection of breast cancer using exhaled breath and urine analysisComputers in Biology and Medicine 2018; 96: 227 doi: 10.1016/j.compbiomed.2018.04.002
115
F. Langlands, J. White, O. Kearins, S. Cheung, R. Burns, K. Horgan, N. Sharma, D. Dodwell. Contralateral breast cancer: incidence according to ductal or lobular phenotype of the primaryClinical Radiology 2016; 71(2): 159 doi: 10.1016/j.crad.2015.10.030
116
Yanyu Zhao, Anahita Pilvar, Anup Tank, Hannah Peterson, John Jiang, Jon C. Aster, John Paul Dumas, Mark C. Pierce, Darren Roblyer. Shortwave-infrared meso-patterned imaging enables label-free mapping of tissue water and lipid contentNature Communications 2020; 11(1) doi: 10.1038/s41467-020-19128-7
117
Xin Wang, Xiang Jiang Wang, Hui Sheng Song, Long Hua Chen. 1H-MRS evaluation of breast lesions by using total choline signal-to-noise ratio as an indicator of malignancy: a meta-analysisMedical Oncology 2015; 32(5) doi: 10.1007/s12032-015-0603-1
118
Bijaya Saha, Nabamita Goswami, Ardhendu Saha. Proposal for the detection of breast cancer at its early stage using wave-theory-based analysis in a tapered fiber structure illuminated by the Bessel–Gauss beam for enhanced sensitivityJournal of the Optical Society of America B 2023; 40(3): 574 doi: 10.1364/JOSAB.479172
119
Niketa Chotai, Supriya Kulkarni. Breast Imaging Essentials2020; : 91 doi: 10.1007/978-981-15-1412-8_14
120
Amira Mofreh Ibraheem, Kamel Hussein Rahouma, Hesham F. A. Hamed. Automatic MRI Breast tumor Detection using Discrete Wavelet Transform and Support Vector Machines2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES) 2019; : 88 doi: 10.1109/NILES.2019.8909345
121
Kai Jannusch, Maike E. Lindemann, Nils Martin Bruckmann, Janna Morawitz, Frederic Dietzel, Kelsey L. Pomykala, Ken Herrmann, Ann-Kathrin Bittner, Oliver Hoffmann, Svjetlana Mohrmann, Lale Umutlu, Gerald Antoch, Harald H. Quick, Julian Kirchner. Towards a fast PET/MRI protocol for breast cancer imaging: maintaining diagnostic confidence while reducing PET and MRI acquisition timesEuropean Radiology 2023; 33(9): 6179 doi: 10.1007/s00330-023-09580-6
122
Sonya Bhole, David Schacht, Sandra Rao, Sarah Friedewald. Breast MRIAdvances in Magnetic Resonance Technology and Applications 2022; 5: 343 doi: 10.1016/B978-0-12-822729-9.00008-4
123
Piero Chiacchiaretta, Domenico Mastrodicasa, Antonio Maria Chiarelli, Riccardo Luberti, Pierpaolo Croce, Mario Sguera, Concetta Torrione, Camilla Marinelli, Chiara Marchetti, Angelucci Domenico, Giulio Cocco, Angela Di Credico, Alessandro Russo, Claudia D’Eramo, Antonio Corvino, Marco Colasurdo, Stefano L. Sensi, Marzia Muzi, Massimo Caulo, Andrea Delli Pizzi. MRI-Based Radiomics Approach Predicts Tumor Recurrence in ER + /HER2 − Early Breast Cancer PatientsJournal of Digital Imaging 2023; 36(3): 1071 doi: 10.1007/s10278-023-00781-5
124
Ann L. Brown, Joanna Jeong, Rifat A. Wahab, Bin Zhang, Mary C. Mahoney. Diagnostic accuracy of MRI textural analysis in the classification of breast tumorsClinical Imaging 2021; 77: 86 doi: 10.1016/j.clinimag.2021.02.031