For: | Shah NR, Chen H. MicroRNAs in pathogenesis of breast cancer: Implications in diagnosis and treatment. World J Clin Oncol 2014; 5(2): 48-60 [PMID: 24829851 DOI: 10.5306/wjco.v5.i2.48] |
---|---|
URL: | https://www.wjgnet.com/2218-4333/full/v5/i2/48.htm |
Number | Citing Articles |
1 |
Elizabeth Varghese, Alena Liskova, Peter Kubatka, Samson Mathews Samuel, Dietrich Büsselberg. Anti-Angiogenic Effects of Phytochemicals on miRNA Regulating Breast Cancer Progression. Biomolecules 2020; 10(2): 191 doi: 10.3390/biom10020191
|
2 |
Yafeng Ma, Laura M. Machesky. Fascin1 in carcinomas: Its regulation and prognostic value. International Journal of Cancer 2015; 137(11): 2534 doi: 10.1002/ijc.29260
|
3 |
Afshin Taheriazam, Amir Jouya Talaei, Mohammad Jamshidi, Mohammadreza Shakeri, Samaneh Khoshbakht, Emad Yahaghi, Marjan Shokrani. RETRACTED ARTICLE: Up-regulation of miR-130b expression level and down-regulation of miR-218 serve as potential biomarker in the early detection of human osteosarcoma. Diagnostic Pathology 2015; 10(1) doi: 10.1186/s13000-015-0422-x
|
4 |
Xiaoping Liu, Hailin Tang, Jianping Chen, Cailu Song, Lu Yang, Peng Liu, Neng Wang, Xinhua Xie, Xiaoti Lin, Xiaoming Xie. MicroRNA-101 inhibits cell progression and increases paclitaxel sensitivity by suppressing MCL-1 expression in human triple-negative breast cancer. Oncotarget 2015; 6(24): 20070 doi: 10.18632/oncotarget.4039
|
5 |
Anqi Ge, Lifang Liu, Xian’guang Deng, Jun Luo, Yanghua Xu, Sri Fatmawati. Exploring the Mechanism of Baicalin Intervention in Breast Cancer Based on MicroRNA Microarrays and Bioinformatics Strategies. Evidence-Based Complementary and Alternative Medicine 2021; 2021: 1 doi: 10.1155/2021/7624415
|
6 |
Mi-Jia Wang, Hao Zhang, Jun Li, Hai-Dong Zhao. microRNA-98 inhibits the proliferation, invasion, migration and promotes apoptosis of breast cancer cells by binding to HMGA2. Bioscience Reports 2018; 38(5) doi: 10.1042/BSR20180571
|
7 |
Luming Zheng, Xukui Zhang, Feng Yang, Jian Zhu, Peng Zhou, Fang Yu, Lei Hou, Lei Xiao, Qingqing He, Baocheng Wang. Regulation of the P2X7R by microRNA-216b in human breast cancer. Biochemical and Biophysical Research Communications 2014; 452(1): 197 doi: 10.1016/j.bbrc.2014.07.101
|
8 |
Fereydoon Abedi-Gaballu, Elham Kamal Kazemi, Seyed Ahmad Salehzadeh, Behnaz Mansoori, Farhad Eslami, Ali Emami, Gholamreza Dehghan, Behzad Baradaran, Behzad Mansoori, William C. Cho. Metabolic Pathways in Breast Cancer Reprograming: An Insight to Non-Coding RNAs. Cells 2022; 11(19): 2973 doi: 10.3390/cells11192973
|
9 |
Joanna Magdalena Zarzynska. The Importance of Autophagy Regulation in Breast Cancer Development and Treatment. BioMed Research International 2014; 2014: 1 doi: 10.1155/2014/710345
|
10 |
Bruno Costa Gomes, Bruno Santos, José Rueff, António Sebastião Rodrigues. Cancer Drug Resistance. Methods in Molecular Biology 2016; 1395: 189 doi: 10.1007/978-1-4939-3347-1_11
|
11 |
Janusz Matuszyk, Dagmara Klopotowska. miR‐125b lowers sensitivity to apoptosis following mitotic arrest: Implications for breast cancer therapy. Journal of Cellular Physiology 2020; 235(10): 6335 doi: 10.1002/jcp.29610
|
12 |
Anahita Tavakoli, Mohammad Saeed Kahrizi, Kimia Safa, Reza ArefNezhad, Fatemeh Rezaei-Tazangi. Umbilical cord mesenchymal stem cells and breast cancer: a good therapeutic candidate or not? A minireview. Molecular Biology Reports 2022; 49(9): 9017 doi: 10.1007/s11033-022-07739-w
|
13 |
Zhe Song, Wei Li, Liang Wang, Nan Jia, Baosheng Chen. MicroRNA-454 inhibits tumor cell proliferation, migration and invasion by downregulating zinc finger E-box-binding homeobox 1 in gastric cancer. Molecular Medicine Reports 2017; 16(6): 9067 doi: 10.3892/mmr.2017.7758
|
14 |
Nairi Abedi, Samira Mohammadi-Yeganeh, Ameneh Koochaki, Fariba Karami, Mahdi Paryan. miR-141 as potential suppressor of β-catenin in breast cancer. Tumor Biology 2015; 36(12): 9895 doi: 10.1007/s13277-015-3738-y
|
15 |
Zahra Sharifi, Mahmood Talkhabi, Sara Taleahmad. Identification of potential microRNA diagnostic panels and uncovering regulatory mechanisms in breast cancer pathogenesis. Scientific Reports 2022; 12(1) doi: 10.1038/s41598-022-24347-7
|
16 |
Sanchi Sukhija, Purvi Purohit, Puneet Pareek, Pawan Kumar Garg, Jeewan Ram Vishnoi, Poonam Abhay Elhence, Shobhan Babu Varthya, Praveen Sharma, Sneha Ambwani, Jaykaran Charan. Circulating miRNA-21 Levels in Breast Cancer Patients Before and After Chemotherapy and Its Association with Clinical Improvement. Indian Journal of Clinical Biochemistry 2024; 39(2): 214 doi: 10.1007/s12291-023-01129-0
|
17 |
R.L. Akshaya, M. Rohini, Z. He, N.C. Partridge, N. Selvamurugan. MiR-4638-3p regulates transforming growth factor-β1-induced activating transcription factor-3 and cell proliferation, invasion, and apoptosis in human breast cancer cells. International Journal of Biological Macromolecules 2022; 222: 1974 doi: 10.1016/j.ijbiomac.2022.09.286
|
18 |
Bailong Li, Ying Lu, Honghai Wang, Xiaocui Han, Jun Mao, Jiazhi Li, Lihui Yu, Bo Wang, Shujun Fan, Xiaotang Yu, Bo Song. RETRACTED: miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway. Biomedicine & Pharmacotherapy 2016; 79: 93 doi: 10.1016/j.biopha.2016.01.045
|
19 |
Chiara Avellini, Caterina Licini, Raffaella Lazzarini, Rosaria Gesuita, Emanuela Guerra, Giovanni Tossetta, Clara Castellucci, Stefano Raffaele Giannubilo, Antonio Procopio, Saverio Alberti, Roberta Mazzucchelli, Fabiola Olivieri, Daniela Marzioni. The trophoblast cell surface antigen 2 and miR-125b axis in urothelial bladder cancer. Oncotarget 2017; 8(35): 58642 doi: 10.18632/oncotarget.17407
|
20 |
Linzhong Zhang, Hongdong Xuan, Yongchun Zuo, Gaojian Xu, Ping Wang, Youhong Song, Shihua Zhang. Topological characteristics of target genes regulated by abiotic-stress-responsible miRNAs in a rice interactome network. Functional & Integrative Genomics 2016; 16(3): 243 doi: 10.1007/s10142-016-0481-4
|
21 |
Elif Demirdogen Sevinc, Gulsah Cecener, Secil Ak, Berrin Tunca, Unal Egeli, Sehsuvar Gokgoz, Sahsine Tolunay, Ismet Tasdelen. Expression and clinical significance of miRNAs that may be associated with the FHIT gene in breast cancer. Gene 2016; 590(2): 278 doi: 10.1016/j.gene.2016.05.033
|
22 |
Erik R. Nelson, Ching-yi Chang, Donald P. McDonnell. Cholesterol and breast cancer pathophysiology. Trends in Endocrinology & Metabolism 2014; 25(12): 649 doi: 10.1016/j.tem.2014.10.001
|
23 |
Muhammad Tariq, Vinitha Richard, Michael J. Kerin. MicroRNAs as Molecular Biomarkers for the Characterization of Basal-like Breast Tumor Subtype. Biomedicines 2023; 11(11): 3007 doi: 10.3390/biomedicines11113007
|
24 |
Min‐Hsiung Pan, Yi‐Siou Chiou, Li‐Hua Chen, Chi‐Tang Ho. Breast cancer chemoprevention by dietary natural phenolic compounds: Specific epigenetic related molecular targets. Molecular Nutrition & Food Research 2015; 59(1): 21 doi: 10.1002/mnfr.201400515
|
25 |
Meriem Boukerroucha, Claire Josse, Sonia ElGuendi, Bouchra Boujemla, Pierre Frères, Raphaël Marée, Stephane Wenric, Karin Segers, Joelle Collignon, Guy Jerusalem, Vincent Bours. Evaluation of BRCA1-related molecular features and microRNAs as prognostic factors for triple negative breast cancers. BMC Cancer 2015; 15(1) doi: 10.1186/s12885-015-1740-9
|
26 |
Caterina Licini, Chiara Avellini, Elena Picchiassi, Emanuela Mensà, Sonia Fantone, Deborah Ramini, Chiara Tersigni, Giovanni Tossetta, Clara Castellucci, Federica Tarquini, Giuliana Coata, Irene Giardina, Andrea Ciavattini, Giovanni Scambia, Gian Carlo Di Renzo, Nicoletta Di Simone, Rosaria Gesuita, Stefano R. Giannubilo, Fabiola Olivieri, Daniela Marzioni. Pre-eclampsia predictive ability of maternal miR-125b: a clinical and experimental study. Translational Research 2021; 228: 13 doi: 10.1016/j.trsl.2020.07.011
|
27 |
Samayita Das. Identification and targeting of microRNAs modulating acquired chemotherapy resistance in Triple negative breast cancer (TNBC): A better strategy to combat chemoresistance. Medical Hypotheses 2016; 96: 5 doi: 10.1016/j.mehy.2016.09.004
|
28 |
Carmen Griñán‐Lisón, María Auxiliadora Olivares‐Urbano, Gema Jiménez, Elena López‐Ruiz, Coral del Val, Cynthia Morata‐Tarifa, José Manuel Entrena, Amanda Rocío González‐Ramírez, Houria Boulaiz, Mercedes Zurita Herrera, María Isabel Núñez, Juan Antonio Marchal. miRNAs as radio‐response biomarkers for breast cancer stem cells. Molecular Oncology 2020; 14(3): 556 doi: 10.1002/1878-0261.12635
|
29 |
Yue-Mei Hu, Xiao-Li Lou, Bao-Zhu Liu, Li Sun, Shan Wan, Lei Wu, Xin Zhao, Qing Zhou, Mao-Min Sun, Kun Tao, Yong-Sheng Zhang, Shou-Li Wang. TGF-β1-regulated miR-3691-3p targets E2F3 and PRDM1 to inhibit prostate cancer progression. Asian Journal of Andrology 2021; 23(2): 188 doi: 10.4103/aja.aja_60_20
|
30 |
Cheng-gui Miao, Wei-jing Shi, You-yi Xiong, Hao Yu, Xiao-lin Zhang, Mei-song Qin, Chuan-lai Du, Tong-wen Song, Bing Zhang, Jun Li. MicroRNA-663 activates the canonical Wnt signaling through the adenomatous polyposis coli suppression. Immunology Letters 2015; 166(1): 45 doi: 10.1016/j.imlet.2015.05.011
|
31 |
Hong Yu, Hui Li, Hua Qian, Xia Jiao, Xiaowei Zhu, Xiaoqin Jiang, Guihong Dai, Junxing Huang. Upregulation of miR-301a correlates with poor prognosis in triple-negative breast cancer. Medical Oncology 2014; 31(11) doi: 10.1007/s12032-014-0283-2
|
32 |
Haifeng Xia, Shaomu Chen, Ke Chen, Haitao Huang, Haitao Ma. MiR-96 promotes proliferation and chemo- or radioresistance by down-regulating RECK in esophageal cancer. Biomedicine & Pharmacotherapy 2014; 68(8): 951 doi: 10.1016/j.biopha.2014.10.023
|
33 |
Temesgen Baylie, Mulugeta Kasaw, Mamaru Getinet, Gedefaw Getie, Mohammed Jemal, Amare Nigatu, Hassen Ahmed, Mihiret Bogale. The role of miRNAs as biomarkers in breast cancer. Frontiers in Oncology 2024; 14 doi: 10.3389/fonc.2024.1374821
|
34 |
Michiko Narita, Eri Shimura, Atsumi Nagasawa, Toshiki Aiuchi, Yukari Suda, Yusuke Hamada, Daigo Ikegami, Chizuru Iwasawa, Kazuhiko Arakawa, Katsuhide Igarashi, Naoko Kuzumaki, Yusuke Yoshioka, Takahiro Ochiya, Hideyuki Takeshima, Toshikazu Ushijima, Minoru Narita, Karl X Chai. Chronic treatment of non-small-cell lung cancer cells with gefitinib leads to an epigenetic loss of epithelial properties associated with reductions in microRNA-155 and -200c. PLOS ONE 2017; 12(2): e0172115 doi: 10.1371/journal.pone.0172115
|
35 |
Vahid Kia, Maryam Sharif Beigli, Vahedeh Hosseini, Ameneh Koochaki, Mahdi Paryan, Samira Mohammadi-Yeganeh. Is miR-144 an effective inhibitor of PTEN mRNA: a controversy in breast cancer. In Vitro Cellular & Developmental Biology - Animal 2018; 54(9): 621 doi: 10.1007/s11626-018-0282-2
|
36 |
Sushmita Bose Nandy, Arunkumar Arumugam, Ramadevi Subramani, Diego Pedroza, Keziah Hernandez, Edward Saltzstein, Rajkumar Lakshmanaswamy. MicroRNA-125a influences breast cancer stem cells by targeting leukemia inhibitory factor receptor which regulates the hippo signaling pathway. Oncotarget 2015; 6(19): 17366 doi: 10.18632/oncotarget.3953
|
37 |
Delu Gan, Shujun Yue, Yulin Jiang, Dian Zhang, He Shi, Husun Qian, Ting Zhou, Wenli Fang, Mengli Yao, Guowei Zuo, Tingmei Chen. Nucleus-located PDK1 regulates growth, invasion and migration of breast cancer cells. Life Sciences 2020; 253: 117722 doi: 10.1016/j.lfs.2020.117722
|
38 |
Vijaya Narasihma Reddy Gajulapalli, Vijaya Lakshmi Malisetty, Suresh Kumar Chitta, Bramanandam Manavathi. Oestrogen receptor negativity in breast cancer: a cause or consequence?. Bioscience Reports 2016; 36(6) doi: 10.1042/BSR20160228
|
39 |
Geraldine Cizeron-Clairac, François Lallemand, Sophie Vacher, Rosette Lidereau, Ivan Bieche, Celine Callens. MiR-190b, the highest up-regulated miRNA in ERα-positive compared to ERα-negative breast tumors, a new biomarker in breast cancers?. BMC Cancer 2015; 15(1) doi: 10.1186/s12885-015-1505-5
|
40 |
Xin Yu, Zheng Li. The role of MicroRNAs expression in laryngeal cancer. Oncotarget 2015; 6(27): 23297 doi: 10.18632/oncotarget.4195
|
41 |
Sepideh Maralbashi, Farhad Salari, Cynthia Aslan, Najibeh Shekari, Mahsa Javadian, Milad Asadi, Tohid Kazemi. Comparative Study of the Effects of Docosahexaenoic Acid, Linoleic Acid, and Taxol in Decreasing the Expression of miR-10b, and miR-20a OncomiRs, and their Target Major Histocompatibility Complex Class I Chain-Related Proteins A (MICA) in Triple-Negative Metastatic Breast Cancer Cell Line. ImmunoAnalysis 2024; 4: 7 doi: 10.34172/ia.4080
|
42 |
Xiangsheng Xiao, Xiaojia Huang, Feng Ye, Bo Chen, Cailu Song, Jiahuai Wen, Zhijie Zhang, Guopei Zheng, Hailin Tang, Xiaoming Xie. The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer. Scientific Reports 2016; 6(1) doi: 10.1038/srep21735
|
43 |
Lixia Cheng, Ruixiu Zhou, Min Chen, Linan Feng, Hongyan Li. MicroRNA-150 targets Rho-associated protein kinase 1 to inhibit cell proliferation, migration and invasion in papillary thyroid carcinoma. Molecular Medicine Reports 2017; 16(2): 2217 doi: 10.3892/mmr.2017.6842
|
44 |
Yogin Patel, Nirav Shah, Ji Shin Lee, Eleni Markoutsa, Chunfa Jie, Shou Liu, Rachel Botbyl, David Reisman, Peisheng Xu, Hexin Chen. A novel double-negative feedback loop between miR-489 and the HER2-SHP2-MAPK signaling axis regulates breast cancer cell proliferation and tumor growth. Oncotarget 2016; 7(14): 18295 doi: 10.18632/oncotarget.7577
|
45 |
Wei Xia, JueYu Zhou, HaiBo Luo, YunZhou Liu, CanCan Peng, WenLing Zheng, WenLi Ma. MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7. Cancer Cell International 2017; 17(1) doi: 10.1186/s12935-017-0383-0
|
46 |
Zahra Nouri Ghonbalani, Shiva Shahmohamadnejad, Parvin Pasalar, Ehsan Khalili. Hypermethylated miR-424 in Colorectal Cancer Subsequently Upregulates VEGF. Journal of Gastrointestinal Cancer 2022; 53(2): 380 doi: 10.1007/s12029-021-00614-0
|
47 |
Apexa Raval, Jigna Joshi, Franky Shah. Significance of metastamiR-10b in breast cancer therapeutics. Journal of the Egyptian National Cancer Institute 2022; 34(1) doi: 10.1186/s43046-022-00120-9
|
48 |
Gretel Mendoza-Almanza, Luis Burciaga-Hernández, Vilma Maldonado, Jorge Melendez-Zajgla, Jorge Olmos. Role of platelets and breast cancer stem cells in metastasis. World Journal of Stem Cells 2020; 12(11): 1237-1254 doi: 10.4252/wjsc.v12.i11.1237
|
49 |
Shan Zhang, Wan-Ling Yin, Xin Zhang, Xiao-Yu Zhang. MicroRNA-455 is downregulated in gastric cancer and inhibits cell proliferation, migration and invasion via targeting insulin-like growth factor 1 receptor. Molecular Medicine Reports 2017; 16(3): 3664 doi: 10.3892/mmr.2017.6979
|
50 |
HUI LI, JIASHUN LUO, BIN XU, KAIJUN LUO, JUAN HOU. MicroRNA-29a inhibits cell migration and invasion by targeting Roundabout 1 in breast cancer cells. Molecular Medicine Reports 2015; 12(2): 3121 doi: 10.3892/mmr.2015.3749
|
51 |
Fulong Yu, Fei Quan, Jinyuan Xu, Yan Zhang, Yi Xie, Jingyu Zhang, Yujia Lan, Huating Yuan, Hongyi Zhang, Shujun Cheng, Yun Xiao, Xia Li. Breast cancer prognosis signature: linking risk stratification to disease subtypes. Briefings in Bioinformatics 2019; 20(6): 2130 doi: 10.1093/bib/bby073
|
52 |
Menha Swellam, Amal Ramadan, Enas A. El‐Hussieny, Noha M. Bakr, Naglaa M. Hassan, Mohamed Emam Sobeih, Lobna R. EzzElArab. Clinical significance of blood‐based miRNAs as diagnostic and prognostic nucleic acid markers in breast cancer: Comparative to conventional tumor markers. Journal of Cellular Biochemistry 2019; 120(8): 12321 doi: 10.1002/jcb.28496
|
53 |
Mingliang Zhang, Wei Guo, Jun Qian, Benzhong Wang. Negative regulation of CDC42 expression and cell cycle progression by miR-29a in breast cancer. Open Medicine 2016; 11(1): 78 doi: 10.1515/med-2016-0015
|
54 |
MIN LI, LULU LIU, WENQIAO ZANG, YUANYUAN WANG, YUWEN DU, XIAONAN CHEN, PING LI, JUAN LI, GUOQIANG ZHAO. miR-365 overexpression promotes cell proliferation and invasion by targeting ADAMTS-1 in breast cancer. International Journal of Oncology 2015; 47(1): 296 doi: 10.3892/ijo.2015.3015
|