Review Open Access
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Pharmacol Ther. Nov 5, 2024; 15(6): 98146
Published online Nov 5, 2024. doi: 10.4292/wjgpt.v15.i6.98146
Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials
Naveen Jeyaraman, Madhan Jeyaraman, Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
Naveen Jeyaraman, Madhan Jeyaraman, Sathish Muthu, Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
Madhan Jeyaraman, Gabriel Silva Santos, Lucas Furtado da Fonseca, José Fábio Lana, Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
Tejaswin Mariappan, Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
Sathish Muthu, Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
Sathish Muthu, Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
Swaminathan Ramasubramanian, Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
Shilpa Sharma, Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
ORCID number: Naveen Jeyaraman (0000-0002-4362-3326); Madhan Jeyaraman (0000-0002-9045-9493); Tejaswin Mariappan (0009-0007-0837-2334); Sathish Muthu (0000-0002-7143-4354); Swaminathan Ramasubramanian (0000-0001-8845-8427); Shilpa Sharma (0000-0001-8695-8372); Gabriel Silva Santos (0000-0002-0549-6821); Lucas Furtado da Fonseca (0000-0001-6497-833X); José Fábio Lana (0000-0002-2330-3982).
Co-first authors: Naveen Jeyaraman and Madhan Jeyaraman.
Author contributions: Jeyaraman M, Mariappan T, and Jeyaraman N contributed to conceptualization; Mariappan T and Ramasubramanian S contributed to acquiring the clinical data and performing the data analysis; Jeyaraman M, Mariappan T, and Ramasubramanian S contributed to manuscript writing; Jeyaraman M, Santos GS, Fonseca LF, and Lana JF helped in manuscript revision; Muthu S contributed to image acquisition; Jeyaraman M contributed to proofreading; Jeyaraman M and Lana JF contributed to administration. All authors have agreed to the final version to be published and agree to be accountable for all aspects of the work.
Conflict-of-interest statement: The authors declare no conflict of interest in publishing the manuscript.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Madhan Jeyaraman, MS, PhD, Assistant Professor, Research Associate, Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Velappanchavadi, Chennai 600077, Tamil Nadu, India. madhanjeyaraman@gmail.com
Received: June 18, 2024
Revised: August 6, 2024
Accepted: September 10, 2024
Published online: November 5, 2024
Processing time: 128 Days and 4.7 Hours

Abstract

With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.

Key Words: Gut-liver axis; Dysbiosis; Liver disease; Probiotics; Fecal microbiota transplantation; Precision medicine

Core Tip: We explore the bidirectional impact of gut-liver interactions on liver disease, highlighting how gut microbiota metabolites affect metabolism. It suggests that altering gut microbiota composition could unveil new treatments for liver ailments. Future cohort studies using pan-omics will be crucial in understanding gut microbiome links to liver disease progression and finding effective interventions.



INTRODUCTION

The liver and gut microbiota exhibit a complex, bidirectional relationship essential for maintaining metabolic equilibrium. Metabolic byproducts from the gut microbiome are transported to the liver via the portal vein, while the liver contributes to gut health by secreting bile and immunoglobulins into the intestinal tract[1]. This physiological exchange is crucial for sustaining a well-balanced metabolic state[2]. In various hepatic disorders, there is a notable perturbation of this equilibrium, a condition known as dysbiosis. Such imbalance is characterized by a decrease in microbial diversity and proliferation of pathogenic bacteria within the gut[3,4]. This altered microbial landscape is indicative of the significant role that the gut microbiota plays in the pathology of liver diseases. Dysbiosis is influenced by a confluence of genetic factors, environmental exposures, and lifestyle choices, which collectively contribute to the progression of liver diseases.

The mechanisms through which dysbiosis exacerbates liver disease are multifaceted. Primarily, it leads to immune dysregulation, which allows for the unchecked progression of disease. Additionally, alterations in energy utilization occur, and there is an increase in intestinal permeability. This heightened permeability facilitates the translocation of toxic metabolites from the gut into the liver. Once in the liver, these toxic substances trigger a pro-inflammatory response. This inflammatory state not only worsens liver function but also promotes the progression of liver disease, establishing a deleterious cycle that further impairs both liver and gut health[4-7]. Thus, understanding the interplay between the gut microbiota and liver function is critical for identifying potential therapeutic targets aimed at restoring this crucial physiological balance. This manuscript describes the pathways connecting the gut microbiota with liver diseases, explores the clinical relevance of the gut-liver axis across different liver conditions, and evaluates the effectiveness of treatments involving probiotics, prebiotics, synbiotics, and faecal microbiota transplantation.

ANATOMY AND PHYSIOLOGY OF GUT-LIVER AXIS

The gut and liver are interlinked majorly through the portal circulation[8-10]. This acts as a medium through which gut metabolites reach the liver. In between there exists a selectively permeable barrier through which nutrients and essential microbial products are translocated. It also acts as a barrier to harmful bacterial products and microbes. This function is achieved through tight junctions between enterocytes which predominantly consist of desmosomes, claudins, occludins, E-cadherins, and adhesion proteins. The short-chain fatty acids produced by the microbiota by the breakdown of dietary fibres have diverse roles such as energy production for intestinal cells, regulating motility of the gut, immune regulation, absorption of nutrients and anti-inflammatory products, and more importantly, altering carbohydrate and lipid metabolism[11]. Butyric acid is essential for maintaining the intestinal barrier[12]. Based on studies on mice, butyric acid and acetic acid act as the principal source of energy for intestinal cells, and their absence increases utilization of glucose and eventually leads to lipogenesis[13]. Added to this, it was found that activation of sterol and cholesterol regulatory element binding protein was inhibited by butyric acid which results in inhibition of lipogenesis[14]. Unlike butyric and acetic acid, propionic acid (mostly produced by pathogenic bacteria) was found to have an adipogenic effect that plays a major role in non-alcoholic fatty liver disease (NAFLD)[15], which summarizes the effects of the microbiota on the liver. The effects of primary bile acids (PBAs) on the gut microbiota are significant as they control the overproduction of pathogenic bacteria. In the gut, the PBAs are converted to secondary bile acids by bacteria. These bile acids act on farnesoid X receptor (FXR) receptors and activate the transcription of protective genes. FXR also decreases the expression of SREBP-1c and LXR, which results in decreased lipogenesis and gluconeogenesis[16]. Another study stated that FXR enhanced glycogenesis through upregulation of GLUT-4, PPAR-gamma, GLP-1, etc., thus improving insulin sensitivity as well[17]. The culmination of all the abovementioned effects is vital to establish homeostasis. The overall gut-liver axis and the role of gut microbiota in maintaining the liver homeostasis is illustrated in Figure 1.

Figure 1
Figure 1 Role of gut microbiota in maintaining liver homeostasis. IgA: Immunoglobulin A; IL: Interleukin; MAMP: Microbe-associated molecular patterns; PAMP: Pathogen-associated molecular patterns; TGF: Transforming growth factor; TNF: Tumor necrosis factor.
ROLE OF GUT MICROBIOTA IN LIVER DISEASES

The human gut is host to 2172 taxonomically distinct species, predominantly composed of the phyla Firmicutes, Bacteroidetes, Fusobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia[18-21]. Each harbours a unique microbial composition, influenced by factors such as age, sex, genetics, environmental exposures, lifestyle choices, medications, and disease states. Commonly, in the context of disease, the gut microbiota is characterized in terms of the Gram-positive Firmicutes and the Gram-negative Bacteroidetes, which are crucial in regulating the immune response and metabolic processes, and maintaining gut homeostasis[22]. Short-chain fatty acids (SCFAs) not only support the integrity of the intestinal barrier but also stimulate the production of antimicrobial peptides like immunoglobulin A. This is facilitated by alterations in mucin layers on the intestinal epithelium and increased mucin production via microbial products[20]. Another pathway involves the sustained activation of Toll-like receptors that boost mucin and antimicrobial peptide levels[23]. Additionally, the gut microbiota modifies bile acids that influence FXR signalling pathways, thereby modulating inflammatory responses, neutralizing endotoxins, and preventing bacterial proliferation[24]. Li et al[25] observed that SCFAs produced by Faecalibacterium, Coprococcus, and Ruminococcus had a suppressive effect on pro-inflammatory mediators.

In alcoholic individuals, an increase in Proteobacteria, Streptococci, and Enterobacteria, and a decrease in Bacteroidetes, Faecalibacterium prausnitzii, Clostridium leptum, and Lactobacillus have been documented[25,26], which led to reduced anti-inflammatory molecule production and enhanced endotoxemia. NAFLD patients show a rise in alcohol-producing bacteria (Proteobacteria-Enterobacteriaceae), which disrupt gut epithelial integrity and facilitate ethanol transport to the liver, thereby inducing oxidative stress and liver damage[27]. In non-alcoholic steatohepatitis (NASH), there is an increase in Firmicutes and a reduction in Bacteroidetes, Proteobacteria, and Actinobacteria[28,29]. A recent study indicated that high levels of alcohol-producing Klebsiella pneumoniae could lead to fatty liver disease via the 2,3-butanediol fermentation pathway, with subsequent alcohol transport to the liver mirroring previously described mechanisms[30]. Patients with hepatitis B virus infections show elevated levels of Veillonella, Fusobacteria, Prevotella, and Acinetobacter[31]. In cirrhosis patients, a reduction in the Bifidobacterium/Enterobacteriaceae ratio, a key indicator of microbial colonization resistance, correlates with increased endotoxemia and IL-6 levels, thereby exacerbating liver inflammation[32]. Bajaj et al[33] demonstrated that improvements in microbiome diversity following liver transplantation were associated with amelioration of liver cirrhosis symptoms. The various interactions between the gut microbiota and liver conditions are summarized in Table 1.

Table 1 Summary of published studies on gut microbiota and hepatic diseases.
Ref.
Population
Disease focus
Key findings
Implications
Chen et al[87], 201136 cirrhosis patients; 24 healthy controlsCirrhosis↑ Proteobacteria; ↑ Fusobacteria; ↑ Enterobacteriacea; ↑ Veillonellacea; ↑ Streptococcaceae; ↓ Bacteroidetes; ↓ LachnospiraceaeDysbiosis due to increased Enterobacteriaceae and Streptococcaceae may affect the prognosis of cirrhosis patients
Liu et al[88], 2012Cirrhosis patients vs healthy controlsCirrhosis↓ Bifidobacterium; ↓ Bacteroidetes; ↑ Proteobacteria; ↑ Fusobacteria; ↑ Enterobacteriaceae; ↑ EnterococcusOn releasing endotoxin by enterobacteriaceae, intestinal permeability is increased
Bajaj et al[89], 201225 cirrhosis patients: 17 with HE and 8 without HE; 10 healthy controlsCirrhosis↑ Bacteroidetes; ↑ Veillonellaceae in HE; ↑ Enterobacteriacea; ↑ Alcaligeneceae; ↑ Porphyromonadacea; ↑ Fusobacteriaceae; ↓ Ruminococcaceae; ↓ LachnospiraceaeDysbiosis was found in patients with HE compared to healthy individuals; endotoxemia, impaired cognition, and inflammation in the liver were seen in patients with HE
Mutlu et al[26], 2012ALD patients vs healthy controlALD↑ Proteobacteria; ↓ Bacteroidetes; ↓ Firmicutes; ↑ Enterobacteriaceae; ↓ Bacteroidetes; ↓ LactobacillusDecreased beneficial bacteria and increased intestinal permeability result in systemic endotoxemia
Zhang et al[90], 201326 cirrhosis patients with HE; 25 cirrhosis patients without HE; 26 healthy controlsCirrhosisStreptococcus salivarius in HE; ↑ Streptococcaceae; ↑ VeillonellaceaeStreptococcus salivarius was found in patients with HE due to increased ammonia
Wong et al[91], 2013NASH patients and healthy controlsNASH↓ Firmicutes; ↓ Clostridiales (Faecalibacterium & Anaerosporobacte); ↑ Bacteroidetes (Parabacteroides & Allisonella)
Mouzaki et al[92], 201333 NAFLD patients; 11 steatosis patients; 22 NASH patients; 17 normal controlsNAFLD; NASH; steatosisC. Coccoides in NASH; ↓ Bacteroidetes in NASHThe relationship between Bacteroidetes and liver disease state was independent of increase in BMI
Zhu et al[51], 201322 NASH patients; 25 obese people; 16 healthy controlsNASH↑ Bacteroides (Prevotella); ↑ Proteobacteria (Escherichia); ↓ Firmicutes; ↓ ActinobacteriaIncreased population of ethanol producing bacteria in patients with NASH contributed to disease progression; increased ethanol-producing bacteria (Escherichia) was due to the use of antibiotics
Raman et al[30], 201330 NAFLD patients; 30 healthy controls NAFLD↑ Proteobacteria; ↑ Firmicutes; ↓ BacteroidetesFaecal ester volatile organic compounds could negatively influence the microbiome composition of patients with NAFLD
Kakiyama et al[93], 201347 cirrhosis patients; 14 healthy controlsCirrhosis↑ Staphylococcaeae; ↑ Enterobacteriaceae; ↑ Enterococcaceae; ↓ Lachnospiraceae; ↓ Ruminococcaceae; ↓ Clostridiales XIV; ↓ BlautiaIncreased pathogenic bacteria as a result of gut dysbiosis in cirrhotic patients with altered bile acid composition
Qin et al[94], 201498 cirrhosis patients; 83 controls Cirrhosis↑ Proteobacteria; ↑ Veillonella; ↑ Streptococcus; ↓ Bacteroidetes; ↓ Lachnospiraceae; ↓ Ruminococcaceae; ↓ BlautiaOral commensals were found in the gut of cirrhotic patients
Bajaj et al[4,95,96], 2014, 2016, and 2019HE patients vs healthy controlHE due to cirrhosis↑ Megasphaera; ↑ Enterococcus; ↑ Burkholderia; ↑ Veillonellaceae; ↓ Fecalibacterium; ↓ Blautia; ↓ Roseburia; ↓ DoreaIncreased pathogenic bacteria are linked with poor cognition and inflammation
Bajaj et al[97], 2014Cirrhosis patients vs healthy controlsCirrhosis↑ Veillonella spp.; ↑ Streptococcus spp.; ↓ Bacteroidetes; ↓ Firmicutes
Grat et al[98], 201615 HCC patients; 5 patients without HCC; all participants with cirrhosis underwent liver transplantationHCCE. coli; ↑ Enterobacteriaceae; ↑ Enterococcus; ↑ Lactobacillus; ↑ H2O2-producing Lactobacillus speciesIncreased faecal counts of E. coli were noted in the cirrhotic-HCC group, indicating its association with HCC development
Llopis et al[27], 2016Severe AH patients vs healthy controlAlcoholic
hepatitis
↑ Bifidobacteria; ↑ Streptococci; ↑ Enterobacteria; ↓ Clostridium leptum; ↓ Faecalibacterium prausnitziithanDecreased anti-inflammatory bacteria and enhanced intestinal dysbiosis result in gut permeability which facilitates microbiota translocation
Chen et al[99], 201630 cirrhosis patients; 28 healthy controlsCirrhosis↑ Veillonella; ↑ Megasphaera; ↑ Dialister; ↑ Atopobium; ↑ Prevotella; ↑ FirmicutesRaised oral commensal bacteria were found in duodenal mucosal microbiota of cirrhotic patients
Ahluwalia et al[100], 201687 patients with HE; 40 healthy controls Cirrhosis↑ Enterobacteriaceae; ↓ Lachnospiraceae; ↓ RuminococcaceaeSpecific bacterial families were associated with astrocytic and neuronal MRI changes; gut dysbiosis in cirrhosis was linked with systemic inflammation, elevated ammonia levels, and neuronal dysfunction
Yang et al[101], 2017ALD patients vs healthy controlsALD↑ Candida; ↓ Epicoccum; ↓ Galactomyces
Dubinkina et al[102], 2017ALD patients vs healthy controlsALD↑ Bifidobacterium; ↑ Streptococcus spp; ↑ Lactobacillus spp; ↓ Prevotella; ↓ Paraprevotella; ↓ Alistipes
Chierico et al[29], 201761 NASH/NAFLD patients;
54 healthy controls
NAFLD; NASH↑ Actinobacteria; ↑ Bradyrhizobium; ↑ Anaerococcus; ↑ Peptoniphilus; ↑ P.acnes; ↑ Enterobacteriaceae (Escherichia coli); ↑ Dorea; ↑ Ruminococcus; ↓ Bacteroidetes; ↓ Oscillospira; ↓ RikenellaceaeIncreased microbial diversity in NASH/NAFLD; decreased Bacteroidaceae and Bacteroides were observed in NAFLD and NASH, while they were increased in obese patients compared to controls; increased ethanol-producing bacteria (Enterobacteriaceae) in NAFL/NASH compared to controls
Loomba et al[103], 2017NAFLD patients and healthy controlsNAFLDEscherichia coli; ↑ Bacteriodes vulgatus; ↓ Ruminococcus spp.; ↓ Eubacterium rectale; ↓ Faecalibacterium prausnitzii
Liu et al[104], 201836 cirrhosis patients; 20 healthy controls Cirrhosis↑ Firmicutes; ↓ BacteroidetesMicrobial dysbiosis in cirrhotic patients with Child-Pugh scores > 5 led to decreased gut motility
Ren et al[105], 201975 early HCC patients; 40 Liver cirrhosis patients; 75 healthy controlsHCC↑ Actinobacteria; ↑ Gemmiger; ↑ Parabacteroides; ↑ Paraprevotella; ↑ Klebsiella; ↑ Haemophilus; ↓ Verrucomicrobia; ↓ Alistipes; ↓ Phascolarctobacterium; ↓ Ruminococcus; ↓ Oscillibacter; ↓ Faecalibacterium; ↓ Clostridium IV; ↓ CoprococcusDecreased butyrate-producing bacteria and increased LPS-producing bacteria observed in early HCC
Ponziani et al[106], 201921 NAFLD-related cirrhosis patients with HCC; 20 NAFLD related cirrhosis patients without HCC; 20 healthy controlsHCC↑ Bacteroides; ↓ Ruminococcaceae; ↑ Bifidobacterium Increased faecal calprotectin in HCC patients is an indicator of inflammatory state
Piñero et al[107], 2019407 cirrhosis patients: 25 with HCC; 25 without HCC; 25 healthy controls HCC↑ Erysipelotrichaceae; ↑ Odoribacter; ↑ Butyricimonas; ↓ Leuconostocaceae; ↓ Fusobacterium; ↓ LachnospiraceaeDecreased Prevotella in cirrhotic patients with HCC, is associated with activation of several inflammatory pathways
Ni et al[108], 201968 primary HCC patients: (23 Stage I, 13 Stage II, 30 Stage III, 2 Stage IV); 18 healthy controls HCC↑ Dysbiosis index Proteobacteria (Enterobacter, Haemophilus); ↑ Desulfococcus; ↑ Prevotella; ↑ Veillonella; ↓ CetobacteriumDysbiosis is seen in patients with primary HCC when compared to healthy controls
Liu et al[69], 201957 HCC patients (35 with HBV related HCC, 22 with non-HBV non-HCV related HCC); 33 healthy controls HCC↑ Bifidobacterium; ↑ Lactobacillus; ↓ Proteobacteria; ↓ Firmicutes Decreased anti-inflammatory and increased pro-inflammatory bacteria in non-HBC non-HCV related HCC patients are positively correlated with alcohol consumption
Schwimmer et al[109], 201987 NAFLD patients; 37 healthy controls NAFLD↑ Bacteroidetes; ↑ Proteobacteria; ↓ FirmicutesDecreased α-diversity in NAFLD was associated with differences in bacterial abundance rather than an increase in specific phyla or genus; increased bacterial pro-inflammatory products (LPS) were seen in patients with NAFLD
Duarte et al[110], 2019NASH patients; healthy controlsNASH↑ Bacteroides; ↑ Proteobacteria; ↑ Enterobacteriaceae; ↑ Escherichia; ↓ Firmicutes; ↓ Actinobacteria; ↑ Klebsiella pneumoniaeIncreased alcohol-producing bacteria supply a constant source of ROS which results in liver inflammation
Kravetz et al[111], 202044 NAFLD patients; 29 healthy controlsNAFLD↓ Bacteroidetes; ↓ Prevotella; ↓ Gemmiger; ↓ OscillospiraDecreased bacterial diversity in patients with NAFLD is associated with an increase in the rate of inflammation in NAFLD
Lang et al[65], 2020NAFLD patients and healthy controlsNAFLD↓ Virus and bacteriophage diversity; ↑ Escherichia; ↑ Enterobacteria; ↑ Lactobacillus phage
Lang et al[112], 2021NAFLD patients and healthy controlsNAFLD↑ Gemmiger; ↓ Faecalibacterium; ↓ Bacteroides; ↓ Prevotella
Behary et al[113], 202132 NAFLD-HCC patients; 28 NAFLD-cirrhosis patients; 30 non-NAFLD controls HCC↑ Proteobacteria; ↑ Enterobacteriaceae; ↑ Bacteroides xylanisolvens; ↑ B. caecimuris; ↑ Ruminococcus gnavus; ↑ Clostridium bolteae; ↑ Veillonella parvula; ↑ Bacteroides caecimuris; ↑ Veillonella parvula; ↑ Clostridium bolteae; ↑ Ruminococcus gnavus; ↓ Oscillospiraceae; ↓ Erysipelotrichaceae; ↓ Eubacteriaceae Increased B. caecimuris and Veillonella parvula distinguish NAFLD-HCC from NAFLD-cirrhosis and non-NAFLD controls; decreased gut microbial α-diversity and increased SCFAs serum levels in NAFLD-HCC result in immunosuppression
Trebicka et al[114], 2021Cirrhosis patients vs healthy controlsCirrhosis↑ Enterobacteriaceae; ↑ Alcaligenaceae; ↑ Streptococcaceae; ↑ Veillonellaceae; ↑ Fusobacteriaceae; ↓ Bacteroidetes; ↓ Ruminococcaceae; ↓ Lachnospiraceae Pathogenic organisms' overgrowth results in accelerated disease progression and endotoxemia which results in reduction of organisms that can produce SCFAs and anti-bacterial peptides
Solé et al[115], 2021182 cirrhosis patientsCirrhosis↑ Enterococcus; ↑ Streptococcus in ACLF; ↑ Faecalibacterium; ↑ Ruminococcus; ↑ Eubacterium in decompensated patientsAs cirrhosis progressed from compensated to uncompensated to ACLF, there was a marked reduction in metagenomic richness

As cirrhosis progresses from compensated to uncompensated to acute-on-chronic liver failure, there is a marked reduction in metagenomic richness.

MECHANISMS LINKING GUT MICROBIOTA TO HEPATIC DISEASES

The onset of liver pathology is often precipitated by dysbiosis, which leads to enhanced intestinal permeability. Various factors, including diet, environment, lifestyle, medications, age, and gender, can alter the gut microbiome[34]. This alteration facilitates the release of lipopolysaccharide (LPS), endotoxins, pathogen-associated molecular patterns, damage-associated molecular patterns, and other gut-derived metabolites into the bloodstream. Once in circulation, LPS interacts with Toll-like receptor 4 (TLR4) on endothelial cells, Kupffer cells, and hematopoietic stem cells, and with TLR9 on dendritic cells. Activation of TLR4 also stimulates liver stellate cells, initiating fibrogenesis and the release of pro-inflammatory and profibrotic mediators like TNF-α, IL-1β, and interleukin (IL)-6, along with chemokines such as CCL2, CXCL2, and CXCL10[35,36]. These inflammatory responses and metabolic disruptions elevate serum-free fatty acid and triglyceride levels, leading to their accumulation in the liver and further inflammatory changes[37]. LPS also affects the secretion of adipokines such as adiponectin, IL-6, and leptin, which enhance hepatic inflammation[38,39]. Moreover, LPS reduces adrenergic stimulation, diminishes the protective effects of IL-10, and decreases reactive oxygen species (ROS) production[40-42]. Enhanced TLR signalling in the colonic mucosa also increases the expression of the inflammasome nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 in patients with NASH rather than simple steatosis[43].

Another pathway of liver injury involves alterations in bile acid metabolism. Normally, PBAs are converted into secondary bile acids such as lithocholic acid and deoxycholic acid (DCA) through 7α-dehydroxylation by bacteria like Lachnospiraceae and Blautia[9,44]. In chronic liver conditions, the inflammatory mediators released inhibit PBA synthesis via CYP7A1, creating a conducive environment for pathogenic bacteria such as Enterobacteriaceae and Porphyromonadaceae due to the reduced production of antimicrobial agents typically stimulated by PBAs[45]. Alternatively, activation of sterol 27-hydroxylase (CYP27A1) results in the production of chenodeoxycholic acid but not cholic acid (CA). This decrease in CA leads to reduced DCA levels, which otherwise inhibit bacterial overgrowth by displaying potent antimicrobial activity[46-48]. Another study observed a reduction in the secondary to primary bile acids (BAs) ratio and a decrease in total faecal BA concentration in the terminal stages of cirrhosis[49]. These shifts result in diminished FXR activation and increased damage mediated by ROS[50]. Consequently, these changes foster bacterial overgrowth and dysbiosis, perpetuating the vicious cycle of increased permeability, immune dysregulation, metabolic imbalance, and hepatocellular damage. Figure 2 illustrates the complex interactions within the gut-liver axis and the mechanisms of its failure, leading to liver injury.

Figure 2
Figure 2 Dysbiotic gut-liver axis resulting in liver damage. IL: Interleukin; LPS: Lipopolysaccharide; M: Macrophage; KCs: Kupffer cells; DAMP: Damage-associated molecular patterns; PAMP: Pathogen-associated molecular patterns; TNF: Tumor necrosis factor.
CLINICAL IMPLICATIONS OF GUT-LIVER AXIS IN HEPATIC DISEASES
NAFLD

NAFLD has been linked to gut dysbiosis influenced by dietary and lifestyle factors. Elevated levels of Proteobacteria, Enterobacteriaceae, and Escherichia, which are known alcohol-producing bacteria, have been observed in patients with NASH[51]. These bacteria may cause liver damage by enabling the translocation of toxins through the portal circulation. In cases of NAFLD or NASH, there is an increase in Bacteroidetes, Proteobacteria, and Actinobacteria[24,28,29,52-54]. Conversely, other studies indicate an increase in Firmicutes and a decrease in Bacteroidetes, Proteobacteria, and Actinobacteria in NASH patients[28,29]. Moreover, the presence of metabolic syndrome in patients with NAFLD correlates with more severe disease due to increased Bacteroidetes and Ruminococcus[55]. A decrease in Coprococcus, Fecalibacterium, and Ruminococcus was noted in NAFLD patients, resulting in a reduction of their anti-inflammatory effects[55].

Alcoholic liver disease

Alcohol consumption disrupts the gut microbiota. Research involving ethanol-fed mice showed intestinal cell death, which increases permeability due to the deterioration of tight junctions[56]. A significant rise in endotoxemia was observed in alcoholics, patients with alcoholic hepatitis, and those with cirrhosis compared to the general population[57]. Mutlu et al[26], in 2012, noted a reduction in Bacteroidetes and Firmicutes and an increase in Proteobacteria. Severe alcoholic liver disease is associated with a higher proportion of Streptococci, Bifidobacteria, and Enterobacteria, and a reduction in anti-inflammatory microorganisms like Faecalibacterium prausnitzii[27]. Furthermore, Parasutterella excrementihominis, absent in alcoholic mouse microbiota but present in non-alcoholic ones, suggests a protective role for this bacterium.

Liver cirrhosis

Cirrhotic patients exhibit a decline in Lachnospiraceae, Clostridia, Ruminococcaceae [Firmicutes phylum], and Bacteroidetes[58-60], along with an increase in pathogenic bacteria such as Veillonellaceae, Enterobacteriaceae, and Streptococcaceae[58,61,62]. This shift towards pathogenic bacteria leads to a reduction in SCFAs and an increase in LPS production. The reduced favourable microbiota is associated with decreased 7α-hydroxylation, which subsequently lowers bile acid levels. This reduction can facilitate the translocation of oral commensals like Streptococcus salivarius[61] and Veillonella species[63] into the gut, driven by urease production, leading to endotoxemia and exacerbating liver inflammation, which may progress to steatosis, hepatitis, and fibrosis.

Hepatocellular carcinoma

The LPS-TLR4 axis is implicated in promoting carcinogenesis via activation of stellate and Kupffer cells, chronic inflammation, and fibrosis, though it does not initiate carcinogenesis[64]. Another pathway involves the activation of the nuclear factor-κB pathway through TLR-4, which stimulates the release of inflammatory cytokines such as IL-1B and IL-18[65,66]. LPS can also trigger epithelial-mesenchymal transition[67]. A common alteration in the gut microbiota in hepatocellular carcinoma (HCC) is an increased Firmicutes/Bacteroidetes ratio[68]. There is also an elevation in inflammatory bacteria like Enterococcus, Escherichia, and Shigella, alongside a reduction in Faecalibacterium, Ruminococcus, and Ruminoclostridium in HCC patients[69]. Additionally, Zheng et al[66] found a decrease in butyrate-producing bacteria such as Clostridium, Coprococcus, and Ruminococcus, and an increase in LPS-producing bacteria like Neisseria, Enterobacteriaceae, and Veillonella in patients with HCC and cirrhosis. These microbial shifts could serve as potential biomarkers for HCC.

Autoimmune hepatitis

The pathogenesis of this condition is primarily dependent on the interplay between genetic and environmental factors. It has been found that genetically susceptible individuals has HLA-DRB1 0301 and HLA-DRB1 0401 genotypes which, on interaction with environmental factors such as viruses (cytomegalovirus, hepatitis A, B, C, and E viruses, and Ebstein-Barr virus) or drugs (minocycline), leads to a dysregulated pro-inflammatory response where the antigen presenting cells set off a cascade of events where helper T cells get activated. Activated helper T cells release a stream of cytokines which in turn activate cytotoxic T cells to release a group of cytokines resulting in an antibody mediated cell toxicity, eventually leading to hepatocellular injury.

Another mechanism in the development of autoimmune hepatitis is through molecular mimicry where the antibodies directed against environmental antigens become self-directed to self-antigens due to similarities of environmental antigens with self-antigens as per Floreani et al[67]. In individuals with AIH, there were significant reductions in species of Bifidobacterium and Lactobacillus, which resulted in increased gut permeability and enhanced translocation of bacteria indicated by increased lipopolysaccharide levels that were positively correlated with the disease severity as per Lin et al[70].

Viral hepatitis and other liver diseases

These pathologies show an increased association between disease progression and dysbiosis. A decrease in Bacteroides, Lactobacillus, Bifidobacterium and an increase in Enterococcus and Enterobacteriaceae, which resulted in altered gut microbiome, were seen in chronic hepatitis B. With limited studies on hepatitis C and gut dysbiosis, it was found that there was a reduction in alpha-diversity and altered gut microbiome. One of the reasons for altered microbiome is that a reduction in bile production leads to an increase in pathogenic species in the gut[71-73].

Another interesting correlation was observed between primary sclerosing cholangitis (PSC) and gut dysbiosis. According to Bajer et al[74], in patients with PSC and PSC-IBD there was an increase in Veillonella, Enterococcus, Clostridium, Streptococcus, Rothia, and Hemophilus and a decrease in Coprococcus. This observation is explained by the fact that the pro-inflammatory state set by PSC leads to increased gut permeability and the products of bacteria such as SCFAs and bile acids leads to disease progression[74].

In primary biliary cholangitis (PBC), a study by Lv et al[75] stated that there was an increase in Veillonella, Bifidobacterium, Neisseria, and Klebsiella and a decrease in Ruminococcus, Bacteroides eggerthii, and Hallella. But further studies are required for establishing treatments that alter the gut microbiome in patients with PBC and PSC/PSC-IBD.

THERAPEUTIC POTENTIALS AND INTERVENTIONS

Targeted changes in human microbiota are achieved through probiotics, prebiotics, and synbiotics as shown in Figure 3.

Figure 3
Figure 3  Therapeutic potential of intestinal microbiome in liver disease management.
Probiotics

Probiotics, which are live organisms, are administered as supplements to supplant pathogenic bacteria. Research has demonstrated that a mixture of Lactobacillus, Streptococcus thermophilus, and Bifidobacteria ameliorated steatosis in mice induced by a high-fat diet[76]. Lactobacillus GG was shown to mitigate intestinal oxidative stress, leakage, and liver damage in rat models of alcoholic steatohepatitis[77]. Additionally, combinations of probiotics have been effective in slowing the progression of HCC in mice by reducing TH17 cells[78]. Akkermansia muciniphila has been noted to strengthen tight junctions and maintain intestinal permeability in alcoholic steatohepatitis models[79]. There is also evidence suggesting that probiotic therapy can enhance the efficacy of immunotherapy in cancer patients[80].

Prebiotics

Studies have shown that pectin can modify the intestinal microbiota in mice, prevent steatosis, and decrease inflammation. Common prebiotics include oligosaccharides, polyunsaturated fatty acids, and polyphenols[81]. A meta-analysis involving 1309 patients with NAFLD reported significant reductions in body mass index, liver enzymes, serum cholesterol, and triglycerides following prebiotic administration[82].

Synbiotics

The combined use of prebiotics and probiotics, known as synbiotics, has shown enhanced benefits. According to Hadi et al[83], synbiotic consumption led to improvements in lipid profiles and metabolic hepatic steatosis. Malaguarnera et al[84] found that after 6 mo of administering Bifidobacterium longum and Fructo-oligosaccharide to 66 patients with NASH, there were significant reductions in serum AST, LPS, inflammatory mediators, fat denaturation, and the NASH activity index.

Faecal microbiota transplantation

Faecal microbiota transplantation (FMT) aims to replace the intestinal flora with a healthier one, improving gut permeability and reducing endotoxemia and inflammatory molecules through the increased production of anti-microbial peptides. In a study by Ferrere et al[85], fecal bacteria from alcohol-resistant mice were transplanted to alcohol-sensitive receptor mice, effectively preventing alcohol-induced intestinal disorders and fatty liver hepatitis. This treatment altered the bacterial composition, decreasing Bacteroides and increasing Actinobacteria and Firmicutes. In a recent randomized, double-blind trial, patients with alcohol-related liver disease and cirrhosis received FMT from a donor with a Lachnospiraceae and Ruminococcaceae rich microbiota. Results from this trial showed reductions in IL-6 and LPS-binding protein levels and an increase in butyrate/isobutyrate levels on day 15 in the FMT group, in contrast to the control and placebo groups[86](Table 2).

Table 2 Potential therapeutic interventions targeting the gut-liver axis.
Interventions
Mechanism of action
Targeted disease
Clinical outcomes
Ref.
Prebiotics (pectin)Restore Bacteroides levelAlcoholic liver diseaseControl dysbiosisFerrere et al[85], 2017
Prebiotics (Fructo-oligosaccharide)Promote fatty acid oxidationNAFLDReduced hepatocyte damage and inflammationMatsumoto et al[116], 2017
Probiotics (E. coli Nissle strain)↑ Lactobacillus species; ↑ Bifidobacterium species; ↓ Proteus hauseri; ↓ Citrobacter species; ↓ Morganella speciesCirrhosis (humans)Significant improvement in gut microbiome with decreased endotoxemia, bilirubin, and ascitesLata et al[117], 2007
Probiotics (Lactobacillus reuteri GMNL-263)↑ Bifidobacteria; ↑ Lactobacilli; ↓ ClostridiaHepatic steatosis (rats)↓ Blood glucose levels, TNF-α and IL-6 production by adipose tissue Hsieh et al[118], 2013
Probiotics ↑ Parabacteroide; ↑ Allisonella; ↓ Faecalibacterium; ↓ AnaerosporobacterNASH (humans)↑ Bacteroidetes ↓ FirmicutesWong et al[91], 2013
Probiotic: VSL#3 (8 probiotic mixture)GLP-1NAFLDDecrease BMI and increase GLP-1 and activated GLP1Alisi et al[119], 2014
Probiotics (VSL #3)↑ Lactobacillus speciesCirrhosis (humans)Reduced hospitalization due to HE with daily intake of probiotic for 6 moDhiman et al[120], 2014
Probiotics (Lactobacillus GG)↑ Firmicutes species; ↓ Enterobacteriaceae; ↓ Porphyromon adacea;Cirrhosis (humans)↓ Endotoxemia and TNF-α after 8 wk; ↓ dysbiosis due to decreased Enterobacteriaceae and increased Firmicutes speciesBajaj et al[95], 2014
Probiotics (cholesterol lowering probiotics and anthraquinone from Cassia obtusifolia L)↑ Bacteroides; ↑ Lactobacillus P; ↑ Arabacteroides; ↓ OscillospiraNAFLD (rats)Improve intestinal barrier and decrease endotoxemia and inflammatory cytokinesMei et al[121], 2015
Probiotics (Prohep: Lactobacillus rhamnosus GG (LGG), viable Escherichia coli Nissle 1917 (EcN), and heat-inactivated VSL#3)↑ Alistipes; ↑ Butyricimonas; ↑ Mucispirillum; ↑ Oscillibacter; ↑ Parabacteroides; ↑ Paraprevotella; ↑ Prevotella; ↑ Bacteroidetes; ↓ Firmicutes; ↓ ProteobacteriaHCC (mice)↑ Anti-inflammatory bacteria; ↓ Th17-inducing bacteria and segmented filamentous pro inflammatory bacteriaLi et al[77], 2016
Probiotics↑ Ruminococcus; ↑ Saccharibacteria (TM7 phylum); ↓ Verrucomicrobia; ↓ VeillonellaNAFLD
(rats)
↓ TC, TG, lipid deposition, and inflammationLiang et al[122], 2019
Six probiotic mixturesGut microbiotaNAFLDReduce intrahepatic fat and body weightAhn et al[123], 2019
Probiotics (multispecies strain)↑ Lactobacillus (brevis, salivarius, lactis); ↑ Faecalibacterium prausnitzii; ↑ Syntrophococcus sucromutans; ↑ Alistipes shahii; ↑ Bacteroides vulgatus; ↑ PrevotellaCirrhosis
(humans)
Gut microbiome enrichment in compensated cirrhosis patients and improved gut barrier functionHorvath et al[124], 2020
Probiotics (Bifidobacterium animalis spp. Lactis 420)↑ Lactobacillus; ↑ Alistipes; ↑ Rikenella; ↑ Clostridia; ↓ Bacteroides; ↓ RuminococcusHCC
(Mice)
Reduced liver injury and improved immune homeostasis via: Increment in tight junction proteins; ↓ Serum endotoxin levels; ↑ fecal SCFAs; ↑ α-diversity regulation of pro-inflammatory cytokines; (-) RIP3-MLKL signalling pathway of liver macrophagesZhang et al[125], 2020
Probiotics (Bifidobacterium and Lactobacillus)↑ Bacteroidetes; ↑ Bifidobacterium; ↑ Bacteroides; ↑ Clostridium; ↑ Ruminococcus; ↑ Anaerostipes; ↑ Blautia; ↓ Firmicutes; ↓ Faecalibacterium; ↓ Helicobacter; ↓ StaphylococcusHCC
(Mice)
↑ Treg cell differentiation; ↑ SCFAs; ↓ infiltration of inflammatory cells in the liver; ↓ ALT, AST; ↓ Th1, Th17 cells; (-) LPS translocation to the liver; (-) activation of the TLR/NF-kB pathwayLiu et al[126], 2021
ProbioticGut barrierNAFLDMohamad et al[127], 2021
FMT↑ Lactobacillaceae; ↑ Bifidobacteriaceae; ↑ Bacteroidetes; ↑ FirmicutesHEImproves dysbiosis and SCFAsBajaj et al[86], (2017)
FMTGut microbiotaCirrhosisReduced systemic inflammationBajaj et al[128], 2019
FMTAllogenic FMT: ↑ Ruminococcus ↑ Eubacterium hallii; ↑ Faecalibacterium; ↑ Prevotella copri; Autologous FMT: ↑ LachnospiraceaeNAFLDDecreased steatosis and liver inflammation and enhanced liver endothelial functionWitjes et al[129], 2020
FMTGut microbiotaNAFLDReduced intestinal permeabilityCraven et al[130], 2020
FMT↑ Bifidobacterium; ↑ Lactobacillus; ↓ Escherichia coliHCCDecreased AST, ALT, and serum IgG levels and prevented progression of alcohol induced hepatitisLiang et al[131], 2021
FMTGut microbiotaNAFLDReduces gut dysbiosis and decreases fat accumulationXue et al[132], 2022
Synbiotics [Bifidobacterium longum and Fructo-oligosaccharide]Gut microbiotaNASHReduced liver inflammation and hepatocyte damageMalaguarnera et al[84], 2012
Synbiotics
[Bifidobacterium animalis and inulin]
Gut microbiotaNAFLDImproved steatosis and liver enzyme levelsLambert et al[133], 2015
SynbioticsGut microbiotaNAFLDIncreased levels of Bifidobacterium and Faecalibacterium, and decreased Oscillibacter and AlistipesScorletti et al[134], 2020
CHALLENGES AND FUTURE DIRECTIONS

The therapeutic landscape for liver diseases is complex, due to challenges such as tissue specificity, drug resistance, and selectivity, complicating the establishment of clear relationships between specific liver conditions and causative organisms. Current research often relies on animal models, primarily mice, which differ significantly in gut microbial diversity from humans. This variation limits the direct applicability of findings to human models. Although advancements in microbial analysis have begun to elucidate the relationships between gut metabolites and specific microbes, many metabolites remain unlinked to distinct microbial agents. Deeper microbial and metabolomic investigations are imperative for understanding the molecular mechanisms underlying liver pathology. The variability in gut microbiota compositions among individuals, influenced by genetic, dietary, and environmental factors, poses a significant challenge in translating microbiota research into clinical applications. This diversity necessitates the development of personalized therapeutic interventions tailored to individual microbiome profiles. Most studies to date have been cross-sectional, restricting the ability to establish causality between microbiota changes and liver disease progression. Longitudinal and multi-centric studies are crucial for tracking microbiota evolution over time and validating findings across diverse populations to enhance the generalizability of the research.

The current understanding of how microbial metabolites affect liver pathology is limited, and further research is needed to identify key microbial strains or metabolites critical in disease progression. This could pave the way for targeted therapies. Moreover, there is a pressing need for non-invasive biomarkers that reflect the gut-liver axis accurately, facilitating early disease diagnosis and monitoring. Advances in metagenomic and metabolomic technologies are pivotal in identifying such biomarkers by profiling microbial communities and their metabolic outputs. The clinical efficacy of microbiota-targeted therapies, such as probiotics, prebiotics, and synbiotics, varies due to differences in formulations, dosages, and patient demographics. Standardized intervention protocols and rigorous clinical trials are essential to ascertain the most effective therapeutic compositions. Furthermore, the safety of therapies like FMT must be thoroughly assessed to mitigate risks associated with the transfer of pathogenic organisms or undesirable genetic materials. Establishing stringent regulatory frameworks and standardized protocols will be critical as these therapies progress toward routine clinical use. Integrating microbiota-modulating therapies with conventional liver disease treatments—such as pharmacotherapy and lifestyle interventions—may enhance therapeutic outcomes. It is also vital to explore how these therapies interact with emerging treatments like gene therapy and immunotherapy to adopt a holistic approach to managing hepatic diseases. Additionally, public health initiatives should integrate gut microbiota research findings to develop guidelines that promote a microbiota-friendly lifestyle through dietary recommendations, lifestyle modifications, and urban planning, thereby preventing liver diseases at a population level and alleviating the broader public health burden.

CONCLUSION

Our article highlights the potential of gut microbiome manipulation as a transformative approach to liver disease treatment, with fewer side effects and complications compared to traditional methods. Therapeutic strategies such as the administration of probiotics, prebiotics, synbiotics, and FMT have shown promise in modulating the gut microbiota to enhance liver health. As we move forward, the integration of these interventions into personalized medicine is essential, utilizing detailed individual microbiome profiles to tailor therapies. The future of liver disease management will be shaped by continued research and innovation. Longitudinal studies and clinical trials are imperative to validate the therapeutic potentials identified and to refine these strategies, propelling us into a new era of precision medicine in hepatology.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Gastroenterology and hepatology

Country of origin: India

Peer-review report’s classification

Scientific Quality: Grade C

Novelty: Grade C

Creativity or Innovation: Grade C

Scientific Significance: Grade B

P-Reviewer: Shi JJ S-Editor: Liu JH L-Editor: Wang TQ P-Editor: Wang WB

References
1.  Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol. 2023;20:447-461.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 73]  [Reference Citation Analysis (0)]
2.  Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020;72:558-577.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 542]  [Cited by in F6Publishing: 972]  [Article Influence: 243.0]  [Reference Citation Analysis (1)]
3.  Li R, Mao Z, Ye X, Zuo T. Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms. 2021;9.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 6]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
4.  Bajaj JS. Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:235-246.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 256]  [Cited by in F6Publishing: 392]  [Article Influence: 78.4]  [Reference Citation Analysis (0)]
5.  Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases. 2019;7.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 52]  [Cited by in F6Publishing: 79]  [Article Influence: 15.8]  [Reference Citation Analysis (0)]
6.  Zheng Z, Wang B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front Immunol. 2021;12:775526.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 49]  [Article Influence: 16.3]  [Reference Citation Analysis (0)]
7.  Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol. 2022;13:923599.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 24]  [Article Influence: 12.0]  [Reference Citation Analysis (0)]
8.  Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol. 2017;312:G413-G419.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 103]  [Cited by in F6Publishing: 106]  [Article Influence: 15.1]  [Reference Citation Analysis (0)]
9.  Fukui H. Leaky Gut and Gut-Liver Axis in Liver Cirrhosis: Clinical Studies Update. Gut Liver. 2021;15:666-676.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 20]  [Cited by in F6Publishing: 48]  [Article Influence: 16.0]  [Reference Citation Analysis (0)]
10.  Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci. 2020;21.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 46]  [Cited by in F6Publishing: 52]  [Article Influence: 13.0]  [Reference Citation Analysis (0)]
11.  Anand S, Mande SS. Host-microbiome interactions: Gut-Liver axis and its connection with other organs. NPJ Biofilms Microbiomes. 2022;8:89.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 41]  [Reference Citation Analysis (0)]
12.  Rauf A, Khalil AA, Rahman UU, Khalid A, Naz S, Shariati MA, Rebezov M, Urtecho EZ, de Albuquerque RDDG, Anwar S, Alamri A, Saini RK, Rengasamy KRR. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Crit Rev Food Sci Nutr. 2022;62:6034-6054.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 11]  [Cited by in F6Publishing: 65]  [Article Influence: 21.7]  [Reference Citation Analysis (0)]
13.  Zhou D, Chen YW, Zhao ZH, Yang RX, Xin FZ, Liu XL, Pan Q, Zhou H, Fan JG. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Exp Mol Med. 2018;50:1-12.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 132]  [Cited by in F6Publishing: 103]  [Article Influence: 17.2]  [Reference Citation Analysis (0)]
14.  Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020;11:25.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 780]  [Cited by in F6Publishing: 1260]  [Article Influence: 315.0]  [Reference Citation Analysis (0)]
15.  Chandrasekaran P, Weiskirchen R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int J Mol Sci. 2024;25.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Reference Citation Analysis (0)]
16.  Liu W, Luo X, Tang J, Mo Q, Zhong H, Zhang H, Feng F. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier. Eur J Nutr. 2021;60:2317-2330.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 36]  [Cited by in F6Publishing: 47]  [Article Influence: 15.7]  [Reference Citation Analysis (0)]
17.  Fiorucci S, Distrutti E. The Pharmacology of Bile Acids and Their Receptors. Handb Exp Pharmacol. 2019;256:3-18.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 42]  [Cited by in F6Publishing: 66]  [Article Influence: 13.2]  [Reference Citation Analysis (0)]
18.  Yang ZX, Shen W, Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatol Int. 2010;4:741-748.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 136]  [Cited by in F6Publishing: 151]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]
19.  Ramires LC, Santos GS, Ramires RP, da Fonseca LF, Jeyaraman M, Muthu S, Lana AV, Azzini G, Smith CS, Lana JF. The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut? Int J Mol Sci. 2022;23.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 18]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
20.  Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 969]  [Cited by in F6Publishing: 1710]  [Article Influence: 342.0]  [Reference Citation Analysis (0)]
21.  Jeyaraman M, Nallakumarasamy A, Jain VK. Gut Microbiome - Should we treat the gut and not the bones? J Clin Orthop Trauma. 2023;39:102149.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 1]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
22.  NIH HMP Working Group; Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M. The NIH Human Microbiome Project. Genome Res. 2009;19:2317-2323.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1410]  [Cited by in F6Publishing: 1325]  [Article Influence: 88.3]  [Reference Citation Analysis (0)]
23.  Birchenough GMH, Johansson MEV. Forming a mucus barrier along the colon. Science. 2020;370:402-403.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 11]  [Cited by in F6Publishing: 11]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
24.  Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Immunity. 2015;42:28-39.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 185]  [Cited by in F6Publishing: 206]  [Article Influence: 22.9]  [Reference Citation Analysis (0)]
25.  Li F, Ye J, Shao C, Zhong B. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis. Lipids Health Dis. 2021;20:22.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 50]  [Article Influence: 16.7]  [Reference Citation Analysis (0)]
26.  Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, Lau CK, Keshavarzian A. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol. 2012;302:G966-G978.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 479]  [Cited by in F6Publishing: 539]  [Article Influence: 44.9]  [Reference Citation Analysis (0)]
27.  Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, Ferrere G, Puchois V, Martin JC, Lepage P, Le Roy T, Lefèvre L, Langelier B, Cailleux F, González-Castro AM, Rabot S, Gaudin F, Agostini H, Prévot S, Berrebi D, Ciocan D, Jousse C, Naveau S, Gérard P, Perlemuter G. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut. 2016;65:830-839.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 326]  [Cited by in F6Publishing: 374]  [Article Influence: 46.8]  [Reference Citation Analysis (0)]
28.  Yuan J, Chen C, Cui J, Lu J, Yan C, Wei X, Zhao X, Li N, Li S, Xue G, Cheng W, Li B, Li H, Lin W, Tian C, Zhao J, Han J, An D, Zhang Q, Wei H, Zheng M, Ma X, Li W, Chen X, Zhang Z, Zeng H, Ying S, Wu J, Yang R, Liu D. Fatty Liver Disease Caused by High-Alcohol-Producing Klebsiella pneumoniae. Cell Metab. 2019;30:675-688.e7.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 188]  [Cited by in F6Publishing: 246]  [Article Influence: 49.2]  [Reference Citation Analysis (0)]
29.  Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani D, Furlanello C, Zandonà A, Paci P, Capuani G, Dallapiccola B, Miccheli A, Alisi A, Putignani L. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology. 2017;65:451-464.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 398]  [Cited by in F6Publishing: 488]  [Article Influence: 69.7]  [Reference Citation Analysis (0)]
30.  Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Myers RP, Rioux KP. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11:868-75.e1.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 451]  [Cited by in F6Publishing: 490]  [Article Influence: 44.5]  [Reference Citation Analysis (0)]
31.  Li NN, Li W, Feng JX, Zhang WW, Zhang R, Du SH, Liu SY, Xue GH, Yan C, Cui JH, Zhao HQ, Feng YL, Gan L, Zhang Q, Chen C, Liu D, Yuan J. High alcohol-producing Klebsiella pneumoniae causes fatty liver disease through 2,3-butanediol fermentation pathway in vivo. Gut Microbes. 2021;13:1979883.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 17]  [Article Influence: 5.7]  [Reference Citation Analysis (0)]
32.  Chen Z, Xie Y, Zhou F, Zhang B, Wu J, Yang L, Xu S, Stedtfeld R, Chen Q, Liu J, Zhang X, Xu H, Ren J. Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease. Front Microbiol. 2020;11:383.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 57]  [Cited by in F6Publishing: 47]  [Article Influence: 11.8]  [Reference Citation Analysis (0)]
33.  Bajaj JS, Fagan A, Sikaroodi M, White MB, Sterling RK, Gilles H, Heuman D, Stravitz RT, Matherly SC, Siddiqui MS, Puri P, Sanyal AJ, Luketic V, John B, Fuchs M, Ahluwalia V, Gillevet PM. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis. Liver Transpl. 2017;23:907-914.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 65]  [Cited by in F6Publishing: 77]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
34.  Stojic J, Kukla M, Grgurevic I. The Intestinal Microbiota in the Development of Chronic Liver Disease: Current Status. Diagnostics (Basel). 2023;13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
35.  Arelaki S, Koletsa T, Sinakos E, Papadopoulos V, Arvanitakis K, Skendros P, Akriviadis E, Ritis K, Germanidis G, Hytiroglou P. Neutrophil extracellular traps enriched with IL-1β and IL-17A participate in the hepatic inflammatory process of patients with non-alcoholic steatohepatitis. Virchows Arch. 2022;481:455-465.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 15]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
36.  Han YH, Choi H, Kim HJ, Lee MO. Chemotactic cytokines secreted from Kupffer cells contribute to the sex-dependent susceptibility to non-alcoholic fatty liver diseases in mice. Life Sci. 2022;306:120846.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 6]  [Reference Citation Analysis (0)]
37.  Rennert C, Heil T, Schicht G, Stilkerich A, Seidemann L, Kegel-Hübner V, Seehofer D, Damm G. Prolonged Lipid Accumulation in Cultured Primary Human Hepatocytes Rather Leads to ER Stress than Oxidative Stress. Int J Mol Sci. 2020;21.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 16]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
38.  Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate Immunity and Inflammation in NAFLD/NASH. Dig Dis Sci. 2016;61:1294-1303.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 328]  [Cited by in F6Publishing: 324]  [Article Influence: 40.5]  [Reference Citation Analysis (0)]
39.  Jennison E, Byrne CD. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin Mol Hepatol. 2021;27:22-43.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 43]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]
40.  Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE. Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production. J Leukoc Biol. 2006;79:1348-1356.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 139]  [Cited by in F6Publishing: 159]  [Article Influence: 8.8]  [Reference Citation Analysis (0)]
41.  von Montfort C, Beier JI, Guo L, Kaiser JP, Arteel GE. Contribution of the sympathetic hormone epinephrine to the sensitizing effect of ethanol on LPS-induced liver damage in mice. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1227-G1234.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 27]  [Cited by in F6Publishing: 31]  [Article Influence: 1.9]  [Reference Citation Analysis (0)]
42.  Hill DB, Barve S, Joshi-Barve S, McClain C. Increased monocyte nuclear factor-kappaB activation and tumor necrosis factor production in alcoholic hepatitis. J Lab Clin Med. 2000;135:387-395.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 71]  [Cited by in F6Publishing: 66]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
43.  Wree A, McGeough MD, Peña CA, Schlattjan M, Li H, Inzaugarat ME, Messer K, Canbay A, Hoffman HM, Feldstein AE. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl). 2014;92:1069-1082.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 281]  [Cited by in F6Publishing: 366]  [Article Influence: 36.6]  [Reference Citation Analysis (0)]
44.  Shen TD, Pyrsopoulos N, Rustgi VK. Microbiota and the liver. Liver Transpl. 2018;24:539-550.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 27]  [Cited by in F6Publishing: 28]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
45.  Ridlon JM, Alves JM, Hylemon PB, Bajaj JS. Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes. 2013;4:382-387.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 227]  [Cited by in F6Publishing: 253]  [Article Influence: 23.0]  [Reference Citation Analysis (0)]
46.  Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50:1955-1966.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1034]  [Cited by in F6Publishing: 1183]  [Article Influence: 78.9]  [Reference Citation Analysis (0)]
47.  Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241-259.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1644]  [Cited by in F6Publishing: 1894]  [Article Influence: 99.7]  [Reference Citation Analysis (0)]
48.  Ridlon JM, Kang DJ, Hylemon PB. Isolation and characterization of a bile acid inducible 7alpha-dehydroxylating operon in Clostridium hylemonae TN271. Anaerobe. 2010;16:137-146.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 103]  [Cited by in F6Publishing: 96]  [Article Influence: 6.9]  [Reference Citation Analysis (0)]
49.  de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira LEVV, Cesar DE, Moreira APB. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr. 2018;57:861-876.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 79]  [Cited by in F6Publishing: 76]  [Article Influence: 12.7]  [Reference Citation Analysis (0)]
50.  Fang J, Yu CH, Li XJ, Yao JM, Fang ZY, Yoon SH, Yu WY. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 2022;12:997018.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 51]  [Article Influence: 25.5]  [Reference Citation Analysis (0)]
51.  Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57:601-609.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1015]  [Cited by in F6Publishing: 1168]  [Article Influence: 106.2]  [Reference Citation Analysis (1)]
52.  Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Calès P, Diehl AM. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63:764-775.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 763]  [Cited by in F6Publishing: 934]  [Article Influence: 116.8]  [Reference Citation Analysis (0)]
53.  Li W, Zhou Y, Pang N, Hu Q, Li Q, Sun Y, Ding Y, Gu Y, Xiao Y, Gao M, Ma S, Pan J, Fang EF, Zhang Z, Yang L. NAD Supplement Alleviates Intestinal Barrier Injury Induced by Ethanol Via Protecting Epithelial Mitochondrial Function. Nutrients. 2022;15.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 6]  [Reference Citation Analysis (0)]
54.  Iogna Prat L, Tsochatzis EA. Pediatric NAFLD: lessons from the gut. Hepatobiliary Surg Nutr. 2020;9:534-536.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 1]  [Article Influence: 0.3]  [Reference Citation Analysis (0)]
55.  Fukui H, Brauner B, Bode JC, Bode C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol. 1991;12:162-169.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 354]  [Cited by in F6Publishing: 343]  [Article Influence: 10.4]  [Reference Citation Analysis (0)]
56.  Pérez-Paramo M, Muñoz J, Albillos A, Freile I, Portero F, Santos M, Ortiz-Berrocal J. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology. 2000;31:43-48.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 188]  [Cited by in F6Publishing: 189]  [Article Influence: 7.9]  [Reference Citation Analysis (0)]
57.  Reiberger T, Ferlitsch A, Payer BA, Mandorfer M, Heinisch BB, Hayden H, Lammert F, Trauner M, Peck-Radosavljevic M, Vogelsang H; Vienna Hepatic Hemodynamic Lab. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J Hepatol. 2013;58:911-921.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 223]  [Cited by in F6Publishing: 225]  [Article Influence: 20.5]  [Reference Citation Analysis (0)]
58.  Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, Markó L, Aron-Wisnewsky J, Nielsen T, Moitinho-Silva L, Schmidt TSB, Falony G, Vieira-Silva S, Adriouch S, Alves RJ, Assmann K, Bastard JP, Birkner T, Caesar R, Chilloux J, Coelho LP, Fezeu L, Galleron N, Helft G, Isnard R, Ji B, Kuhn M, Le Chatelier E, Myridakis A, Olsson L, Pons N, Prifti E, Quinquis B, Roume H, Salem JE, Sokolovska N, Tremaroli V, Valles-Colomer M, Lewinter C, Søndertoft NB, Pedersen HK, Hansen TH; MetaCardis Consortium*, Gøtze JP, Køber L, Vestergaard H, Hansen T, Zucker JD, Hercberg S, Oppert JM, Letunic I, Nielsen J, Bäckhed F, Ehrlich SD, Dumas ME, Raes J, Pedersen O, Clément K, Stumvoll M, Bork P. Combinatorial, additive and dose-dependent drug-microbiome associations. Nature. 2021;600:500-505.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 43]  [Cited by in F6Publishing: 93]  [Article Influence: 31.0]  [Reference Citation Analysis (0)]
59.  Moore KP, Aithal GP. Guidelines on the management of ascites in cirrhosis. Gut. 2006;55 Suppl 6:vi1-v12.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 171]  [Cited by in F6Publishing: 202]  [Article Influence: 11.2]  [Reference Citation Analysis (0)]
60.  Mookerjee RP, Pavesi M, Thomsen KL, Mehta G, Macnaughtan J, Bendtsen F, Coenraad M, Sperl J, Gines P, Moreau R, Arroyo V, Jalan R; CANONIC Study Investigators of the EASL-CLIF Consortium. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J Hepatol. 2016;64:574-582.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 152]  [Cited by in F6Publishing: 167]  [Article Influence: 20.9]  [Reference Citation Analysis (0)]
61.  Bajaj JS, Idilman R, Mabudian L, Hood M, Fagan A, Turan D, White MB, Karakaya F, Wang J, Atalay R, Hylemon PB, Gavis EA, Brown R, Thacker LR, Acharya C, Heuman DM, Sikaroodi M, Gillevet PM. Diet affects gut microbiota and modulates hospitalization risk differentially in an international cirrhosis cohort. Hepatology. 2018;68:234-247.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 69]  [Cited by in F6Publishing: 69]  [Article Influence: 11.5]  [Reference Citation Analysis (0)]
62.  Gupta H, Youn GS, Shin MJ, Suk KT. Role of Gut Microbiota in Hepatocarcinogenesis. Microorganisms. 2019;7.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 59]  [Cited by in F6Publishing: 66]  [Article Influence: 13.2]  [Reference Citation Analysis (0)]
63.  Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, Tang L, Lin Y, He YQ, Zou SS, Wang C, Zhang HL, Cao GW, Wu MC, Wang HY. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology. 2010;52:1322-1333.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 218]  [Cited by in F6Publishing: 235]  [Article Influence: 16.8]  [Reference Citation Analysis (0)]
64.  Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14:527-539.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 334]  [Cited by in F6Publishing: 369]  [Article Influence: 52.7]  [Reference Citation Analysis (0)]
65.  Lang S, Demir M, Martin A, Jiang L, Zhang X, Duan Y, Gao B, Wisplinghoff H, Kasper P, Roderburg C, Tacke F, Steffen HM, Goeser T, Abraldes JG, Tu XM, Loomba R, Stärkel P, Pride D, Fouts DE, Schnabl B. Intestinal Virome Signature Associated With Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology. 2020;159:1839-1852.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 66]  [Cited by in F6Publishing: 103]  [Article Influence: 25.8]  [Reference Citation Analysis (0)]
66.  Zheng R, Wang G, Pang Z, Ran N, Gu Y, Guan X, Yuan Y, Zuo X, Pan H, Zheng J, Wang F. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med. 2020;9:4232-4250.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 61]  [Article Influence: 15.3]  [Reference Citation Analysis (0)]
67.  Floreani A, Restrepo-Jiménez P, Secchi MF, De Martin S, Leung PSC, Krawitt E, Bowlus CL, Gershwin ME, Anaya JM. Etiopathogenesis of autoimmune hepatitis. J Autoimmun. 2018;95:133-143.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 71]  [Cited by in F6Publishing: 75]  [Article Influence: 12.5]  [Reference Citation Analysis (0)]
68.  Khalyfa AA, Punatar S, Yarbrough A. Hepatocellular Carcinoma: Understanding the Inflammatory Implications of the Microbiome. Int J Mol Sci. 2022;23.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 6]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
69.  Liu Q, Li F, Zhuang Y, Xu J, Wang J, Mao X, Zhang Y, Liu X. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog. 2019;11:1.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 118]  [Cited by in F6Publishing: 123]  [Article Influence: 24.6]  [Reference Citation Analysis (0)]
70.  Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol. 2015;8:5153-5160.  [PubMed]  [DOI]  [Cited in This Article: ]
71.  Hsu YC, Chen CC, Lee WH, Chang CY, Lee FJ, Tseng CH, Chen TH, Ho HJ, Lin JT, Wu CY. Compositions of gut microbiota before and shortly after hepatitis C viral eradication by direct antiviral agents. Sci Rep. 2022;12:5481.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 4]  [Reference Citation Analysis (0)]
72.  El-Mowafy M, Elgaml A, El-Mesery M, Sultan S, Ahmed TAE, Gomaa AI, Aly M, Mottawea W. Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection. Biology (Basel). 2021;10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 8]  [Article Influence: 2.7]  [Reference Citation Analysis (0)]
73.  Marascio N, De Caro C, Quirino A, Mazzitelli M, Russo E, Torti C, Matera G. The Role of the Microbiota Gut-Liver Axis during HCV Chronic Infection: A Schematic Overview. J Clin Med. 2022;11.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 3]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
74.  Bajer L, Kverka M, Kostovcik M, Macinga P, Dvorak J, Stehlikova Z, Brezina J, Wohl P, Spicak J, Drastich P. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol. 2017;23:4548-4558.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 215]  [Cited by in F6Publishing: 234]  [Article Influence: 33.4]  [Reference Citation Analysis (3)]
75.  Lv LX, Fang DQ, Shi D, Chen DY, Yan R, Zhu YX, Chen YF, Shao L, Guo FF, Wu WR, Li A, Shi HY, Jiang XW, Jiang HY, Xiao YH, Zheng SS, Li LJ. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol. 2016;18:2272-2286.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 121]  [Cited by in F6Publishing: 165]  [Article Influence: 23.6]  [Reference Citation Analysis (0)]
76.  Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol. 2009;43:163-172.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 271]  [Cited by in F6Publishing: 299]  [Article Influence: 19.9]  [Reference Citation Analysis (0)]
77.  Li J, Sung CY, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, El-Nezami H. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A. 2016;113:E1306-E1315.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 299]  [Cited by in F6Publishing: 381]  [Article Influence: 47.6]  [Reference Citation Analysis (0)]
78.  Grander C, Adolph TE, Wieser V, Lowe P, Wrzosek L, Gyongyosi B, Ward DV, Grabherr F, Gerner RR, Pfister A, Enrich B, Ciocan D, Macheiner S, Mayr L, Drach M, Moser P, Moschen AR, Perlemuter G, Szabo G, Cassard AM, Tilg H. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut. 2018;67:891-901.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 319]  [Cited by in F6Publishing: 402]  [Article Influence: 67.0]  [Reference Citation Analysis (0)]
79.  Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragón L, Jacquelot N, Qu B, Ferrere G, Clémenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91-97.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2493]  [Cited by in F6Publishing: 3396]  [Article Influence: 485.1]  [Reference Citation Analysis (0)]
80.  Houron C, Ciocan D, Trainel N, Mercier-Nomé F, Hugot C, Spatz M, Perlemuter G, Cassard AM. Gut Microbiota Reshaped by Pectin Treatment Improves Liver Steatosis in Obese Mice. Nutrients. 2021;13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 15]  [Cited by in F6Publishing: 15]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
81.  Plamada D, Vodnar DC. Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients. 2021;14.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 111]  [Article Influence: 37.0]  [Reference Citation Analysis (0)]
82.  Reshef N, Gophna U, Reshef L, Konikoff F, Gabay G, Zornitzki T, Knobler H, Maor Y. Prebiotic Treatment in Patients with Nonalcoholic Fatty Liver Disease (NAFLD)-A Randomized Pilot Trial. Nutrients. 2024;16.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
83.  Hadi A, Mohammadi H, Miraghajani M, Ghaedi E. Efficacy of synbiotic supplementation in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of clinical trials: Synbiotic supplementation and NAFLD. Crit Rev Food Sci Nutr. 2019;59:2494-2505.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 27]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
84.  Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, Mastrojeni S, Malaguarnera G, Mistretta A, Li Volti G, Galvano F. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012;57:545-553.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 287]  [Cited by in F6Publishing: 306]  [Article Influence: 25.5]  [Reference Citation Analysis (1)]
85.  Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, Gaudin F, Noordine ML, Robert V, Berrebi D, Thomas M, Naveau S, Perlemuter G, Cassard AM. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 2017;66:806-815.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 200]  [Cited by in F6Publishing: 217]  [Article Influence: 31.0]  [Reference Citation Analysis (0)]
86.  Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, Williams R, Sikaroodi M, Fuchs M, Alm E, John B, Thacker LR, Riva A, Smith M, Taylor-Robinson SD, Gillevet PM. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: A randomized clinical trial. Hepatology. 2017;66:1727-1738.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 351]  [Cited by in F6Publishing: 393]  [Article Influence: 56.1]  [Reference Citation Analysis (0)]
87.  Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, Wang Y, Zhu B, Li L. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54:562-572.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 674]  [Cited by in F6Publishing: 733]  [Article Influence: 56.4]  [Reference Citation Analysis (1)]
88.  Liu J, Wu D, Ahmed A, Li X, Ma Y, Tang L, Mo D, Ma Y, Xin Y. Comparison of the gut microbe profiles and numbers between patients with liver cirrhosis and healthy individuals. Curr Microbiol. 2012;65:7-13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 52]  [Cited by in F6Publishing: 41]  [Article Influence: 3.4]  [Reference Citation Analysis (0)]
89.  Bajaj JS, Ridlon JM, Hylemon PB, Thacker LR, Heuman DM, Smith S, Sikaroodi M, Gillevet PM. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2012;302:G168-G175.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 347]  [Cited by in F6Publishing: 393]  [Article Influence: 32.8]  [Reference Citation Analysis (0)]
90.  Zhang Z, Zhai H, Geng J, Yu R, Ren H, Fan H, Shi P. Large-scale survey of gut microbiota associated with MHE Via 16S rRNA-based pyrosequencing. Am J Gastroenterol. 2013;108:1601-1611.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 111]  [Cited by in F6Publishing: 127]  [Article Influence: 11.5]  [Reference Citation Analysis (0)]
91.  Wong VW, Tse CH, Lam TT, Wong GL, Chim AM, Chu WC, Yeung DK, Law PT, Kwan HS, Yu J, Sung JJ, Chan HL. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One. 2013;8:e62885.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 201]  [Cited by in F6Publishing: 229]  [Article Influence: 20.8]  [Reference Citation Analysis (0)]
92.  Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120-127.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 496]  [Cited by in F6Publishing: 513]  [Article Influence: 46.6]  [Reference Citation Analysis (0)]
93.  Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, Takei H, Muto A, Nittono H, Ridlon JM, White MB, Noble NA, Monteith P, Fuchs M, Thacker LR, Sikaroodi M, Bajaj JS. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58:949-955.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 503]  [Cited by in F6Publishing: 567]  [Article Influence: 51.5]  [Reference Citation Analysis (0)]
94.  Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Ehrlich SD, Zheng S, Li L. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59-64.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1230]  [Cited by in F6Publishing: 1424]  [Article Influence: 142.4]  [Reference Citation Analysis (38)]
95.  Bajaj JS. The role of microbiota in hepatic encephalopathy. Gut Microbes. 2014;5:397-403.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 105]  [Cited by in F6Publishing: 111]  [Article Influence: 11.1]  [Reference Citation Analysis (0)]
96.  Bajaj JS. Review article: potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis. Aliment Pharmacol Ther. 2016;43 Suppl 1:11-26.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 72]  [Cited by in F6Publishing: 65]  [Article Influence: 8.1]  [Reference Citation Analysis (0)]
97.  Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, Noble NA, Unser AB, Daita K, Fisher AR, Sikaroodi M, Gillevet PM. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60:940-947.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 659]  [Cited by in F6Publishing: 768]  [Article Influence: 76.8]  [Reference Citation Analysis (0)]
98.  Grąt M, Wronka KM, Krasnodębski M, Masior Ł, Lewandowski Z, Kosińska I, Grąt K, Stypułkowski J, Rejowski S, Wasilewicz M, Gałęcka M, Szachta P, Krawczyk M. Profile of Gut Microbiota Associated With the Presence of Hepatocellular Cancer in Patients With Liver Cirrhosis. Transplant Proc. 2016;48:1687-1691.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 108]  [Cited by in F6Publishing: 125]  [Article Influence: 17.9]  [Reference Citation Analysis (0)]
99.  Chen Y, Ji F, Guo J, Shi D, Fang D, Li L. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci Rep. 2016;6:34055.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 115]  [Cited by in F6Publishing: 136]  [Article Influence: 17.0]  [Reference Citation Analysis (0)]
100.  Ahluwalia V, Betrapally NS, Hylemon PB, White MB, Gillevet PM, Unser AB, Fagan A, Daita K, Heuman DM, Zhou H, Sikaroodi M, Bajaj JS. Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Sci Rep. 2016;6:26800.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 123]  [Cited by in F6Publishing: 146]  [Article Influence: 18.3]  [Reference Citation Analysis (0)]
101.  Yang AM, Inamine T, Hochrath K, Chen P, Wang L, Llorente C, Bluemel S, Hartmann P, Xu J, Koyama Y, Kisseleva T, Torralba MG, Moncera K, Beeri K, Chen CS, Freese K, Hellerbrand C, Lee SM, Hoffman HM, Mehal WZ, Garcia-Tsao G, Mutlu EA, Keshavarzian A, Brown GD, Ho SB, Bataller R, Stärkel P, Fouts DE, Schnabl B. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest. 2017;127:2829-2841.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 238]  [Cited by in F6Publishing: 319]  [Article Influence: 45.6]  [Reference Citation Analysis (0)]
102.  Dubinkina VB, Tyakht AV, Odintsova VY, Yarygin KS, Kovarsky BA, Pavlenko AV, Ischenko DS, Popenko AS, Alexeev DG, Taraskina AY, Nasyrova RF, Krupitsky EM, Shalikiani NV, Bakulin IG, Shcherbakov PL, Skorodumova LO, Larin AK, Kostryukova ES, Abdulkhakov RA, Abdulkhakov SR, Malanin SY, Ismagilova RK, Grigoryeva TV, Ilina EN, Govorun VM. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome. 2017;5:141.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 280]  [Cited by in F6Publishing: 295]  [Article Influence: 42.1]  [Reference Citation Analysis (0)]
103.  Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, Dulai PS, Caussy C, Bettencourt R, Highlander SK, Jones MB, Sirlin CB, Schnabl B, Brinkac L, Schork N, Chen CH, Brenner DA, Biggs W, Yooseph S, Venter JC, Nelson KE. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017;25:1054-1062.e5.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 551]  [Cited by in F6Publishing: 665]  [Article Influence: 95.0]  [Reference Citation Analysis (0)]
104.  Liu Y, Jin Y, Li J, Zhao L, Li Z, Xu J, Zhao F, Feng J, Chen H, Fang C, Shilpakar R, Wei Y. Small Bowel Transit and Altered Gut Microbiota in Patients With Liver Cirrhosis. Front Physiol. 2018;9:470.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 13]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
105.  Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R, Xu S, Zhang H, Cui G, Chen X, Sun R, Wen H, Lerut JP, Kan Q, Li L, Zheng S. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68:1014-1023.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 305]  [Cited by in F6Publishing: 437]  [Article Influence: 87.4]  [Reference Citation Analysis (0)]
106.  Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, Sanguinetti M, Morelli D, Paroni Sterbini F, Petito V, Reddel S, Calvani R, Camisaschi C, Picca A, Tuccitto A, Gasbarrini A, Pompili M, Mazzaferro V. Hepatocellular Carcinoma Is Associated With Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease. Hepatology. 2019;69:107-120.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 300]  [Cited by in F6Publishing: 412]  [Article Influence: 82.4]  [Reference Citation Analysis (1)]
107.  Piñero F, Vazquez M, Baré P, Rohr C, Mendizabal M, Sciara M, Alonso C, Fay F, Silva M. A different gut microbiome linked to inflammation found in cirrhotic patients with and without hepatocellular carcinoma. Ann Hepatol. 2019;18:480-487.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 33]  [Cited by in F6Publishing: 47]  [Article Influence: 11.8]  [Reference Citation Analysis (0)]
108.  Ni J, Huang R, Zhou H, Xu X, Li Y, Cao P, Zhong K, Ge M, Chen X, Hou B, Yu M, Peng B, Li Q, Zhang P, Gao Y. Analysis of the Relationship Between the Degree of Dysbiosis in Gut Microbiota and Prognosis at Different Stages of Primary Hepatocellular Carcinoma. Front Microbiol. 2019;10:1458.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 37]  [Cited by in F6Publishing: 61]  [Article Influence: 12.2]  [Reference Citation Analysis (0)]
109.  Schwimmer JB, Johnson JS, Angeles JE, Behling C, Belt PH, Borecki I, Bross C, Durelle J, Goyal NP, Hamilton G, Holtz ML, Lavine JE, Mitreva M, Newton KP, Pan A, Simpson PM, Sirlin CB, Sodergren E, Tyagi R, Yates KP, Weinstock GM, Salzman NH. Microbiome Signatures Associated With Steatohepatitis and Moderate to Severe Fibrosis in Children With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019;157:1109-1122.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 114]  [Cited by in F6Publishing: 171]  [Article Influence: 34.2]  [Reference Citation Analysis (0)]
110.  Duarte SMB, Stefano JT, Oliveira CP. Microbiota and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH). Ann Hepatol. 2019;18:416-421.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 34]  [Cited by in F6Publishing: 42]  [Article Influence: 10.5]  [Reference Citation Analysis (0)]
111.  Monga Kravetz A, Testerman T, Galuppo B, Graf J, Pierpont B, Siebel S, Feinn R, Santoro N. Effect of Gut Microbiota and PNPLA3 rs738409 Variant on Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Youth. J Clin Endocrinol Metab. 2020;105:e3575-e3585.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 31]  [Cited by in F6Publishing: 53]  [Article Influence: 13.3]  [Reference Citation Analysis (0)]
112.  Lang S, Martin A, Zhang X, Farowski F, Wisplinghoff H, J G T Vehreschild M, Krawczyk M, Nowag A, Kretzschmar A, Scholz C, Kasper P, Roderburg C, Mohr R, Lammert F, Tacke F, Schnabl B, Goeser T, Steffen HM, Demir M. Combined analysis of gut microbiota, diet and PNPLA3 polymorphism in biopsy-proven non-alcoholic fatty liver disease. Liver Int. 2021;41:1576-1591.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 12]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
113.  Behary J, Amorim N, Jiang XT, Raposo A, Gong L, McGovern E, Ibrahim R, Chu F, Stephens C, Jebeili H, Fragomeli V, Koay YC, Jackson M, O'Sullivan J, Weltman M, McCaughan G, El-Omar E, Zekry A. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun. 2021;12:187.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 231]  [Cited by in F6Publishing: 213]  [Article Influence: 71.0]  [Reference Citation Analysis (0)]
114.  Trebicka J, Macnaughtan J, Schnabl B, Shawcross DL, Bajaj JS. The microbiota in cirrhosis and its role in hepatic decompensation. J Hepatol. 2021;75 Suppl 1:S67-S81.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 130]  [Cited by in F6Publishing: 110]  [Article Influence: 36.7]  [Reference Citation Analysis (0)]
115.  Solé C, Guilly S, Da Silva K, Llopis M, Le-Chatelier E, Huelin P, Carol M, Moreira R, Fabrellas N, De Prada G, Napoleone L, Graupera I, Pose E, Juanola A, Borruel N, Berland M, Toapanta D, Casellas F, Guarner F, Doré J, Solà E, Ehrlich SD, Ginès P. Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis. Gastroenterology. 2021;160:206-218.e13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 52]  [Cited by in F6Publishing: 80]  [Article Influence: 26.7]  [Reference Citation Analysis (0)]
116.  Matsumoto K, Ichimura M, Tsuneyama K, Moritoki Y, Tsunashima H, Omagari K, Hara M, Yasuda I, Miyakawa H, Kikuchi K. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis. PLoS One. 2017;12:e0175406.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 43]  [Article Influence: 6.1]  [Reference Citation Analysis (0)]
117.  Lata J, Novotný I, Príbramská V, Juránková J, Fric P, Kroupa R, Stibůrek O. The effect of probiotics on gut flora, level of endotoxin and Child-Pugh score in cirrhotic patients: results of a double-blind randomized study. Eur J Gastroenterol Hepatol. 2007;19:1111-1113.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 84]  [Cited by in F6Publishing: 86]  [Article Influence: 5.1]  [Reference Citation Analysis (0)]
118.  Hsieh FC, Lee CL, Chai CY, Chen WT, Lu YC, Wu CS. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab (Lond). 2013;10:35.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 176]  [Cited by in F6Publishing: 161]  [Article Influence: 14.6]  [Reference Citation Analysis (0)]
119.  Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, Giammaria P, Reali L, Anania F, Nobili V. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2014;39:1276-1285.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 286]  [Cited by in F6Publishing: 298]  [Article Influence: 29.8]  [Reference Citation Analysis (0)]
120.  Dhiman RK, Rana B, Agrawal S, Garg A, Chopra M, Thumburu KK, Khattri A, Malhotra S, Duseja A, Chawla YK. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147:1327-37.e3.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 233]  [Cited by in F6Publishing: 229]  [Article Influence: 22.9]  [Reference Citation Analysis (0)]
121.  Mei L, Tang Y, Li M, Yang P, Liu Z, Yuan J, Zheng P. Co-Administration of Cholesterol-Lowering Probiotics and Anthraquinone from Cassia obtusifolia L. Ameliorate Non-Alcoholic Fatty Liver. PLoS One. 2015;10:e0138078.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 44]  [Article Influence: 4.9]  [Reference Citation Analysis (0)]
122.  Liang Y, Liang S, Zhang Y, Deng Y, He Y, Chen Y, Liu C, Lin C, Yang Q. Oral Administration of Compound Probiotics Ameliorates HFD-Induced Gut Microbe Dysbiosis and Chronic Metabolic Inflammation via the G Protein-Coupled Receptor 43 in Non-alcoholic Fatty Liver Disease Rats. Probiotics Antimicrob Proteins. 2019;11:175-185.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 56]  [Cited by in F6Publishing: 70]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]
123.  Ahn SB, Jun DW, Kang BK, Lim JH, Lim S, Chung MJ. Randomized, Double-blind, Placebo-controlled Study of a Multispecies Probiotic Mixture in Nonalcoholic Fatty Liver Disease. Sci Rep. 2019;9:5688.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 71]  [Cited by in F6Publishing: 117]  [Article Influence: 23.4]  [Reference Citation Analysis (0)]
124.  Horvath A, Durdevic M, Leber B, di Vora K, Rainer F, Krones E, Douschan P, Spindelboeck W, Durchschein F, Zollner G, Stauber RE, Fickert P, Stiegler P, Stadlbauer V. Changes in the Intestinal Microbiome during a Multispecies Probiotic Intervention in Compensated Cirrhosis. Nutrients. 2020;12.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 12]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
125.  Zhang H, Liu M, Liu X, Zhong W, Li Y, Ran Y, Guo L, Chen X, Zhao J, Wang B, Zhou L. Bifidobacterium animalis ssp. Lactis 420 Mitigates Autoimmune Hepatitis Through Regulating Intestinal Barrier and Liver Immune Cells. Front Immunol. 2020;11:569104.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 11]  [Cited by in F6Publishing: 32]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
126.  Liu Q, Tian H, Kang Y, Tian Y, Li L, Kang X, Yang H, Wang Y, Tian J, Zhang F, Tong M, Cai H, Fan W. Probiotics alleviate autoimmune hepatitis in mice through modulation of gut microbiota and intestinal permeability. J Nutr Biochem. 2021;98:108863.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 23]  [Cited by in F6Publishing: 33]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
127.  Mohamad Nor MH, Ayob N, Mokhtar NM, Raja Ali RA, Tan GC, Wong Z, Shafiee NH, Wong YP, Mustangin M, Nawawi KNM. The Effect of Probiotics (MCP(®) BCMC(®) Strains) on Hepatic Steatosis, Small Intestinal Mucosal Immune Function, and Intestinal Barrier in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients. 2021;13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 75]  [Article Influence: 25.0]  [Reference Citation Analysis (0)]
128.  Bajaj JS, Salzman N, Acharya C, Takei H, Kakiyama G, Fagan A, White MB, Gavis EA, Holtz ML, Hayward M, Nittono H, Hylemon PB, Cox IJ, Williams R, Taylor-Robinson SD, Sterling RK, Matherly SC, Fuchs M, Lee H, Puri P, Stravitz RT, Sanyal AJ, Ajayi L, Le Guennec A, Atkinson RA, Siddiqui MS, Luketic V, Pandak WM, Sikaroodi M, Gillevet PM. Microbial functional change is linked with clinical outcomes after capsular fecal transplant in cirrhosis. JCI Insight. 2019;4.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 45]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
129.  Witjes JJ, Smits LP, Pekmez CT, Prodan A, Meijnikman AS, Troelstra MA, Bouter KEC, Herrema H, Levin E, Holleboom AG, Winkelmeijer M, Beuers UH, van Lienden K, Aron-Wisnewky J, Mannisto V, Bergman JJ, Runge JH, Nederveen AJ, Dragsted LO, Konstanti P, Zoetendal EG, de Vos W, Verheij J, Groen AK, Nieuwdorp M. Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals With Steatohepatitis. Hepatol Commun. 2020;4:1578-1590.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 59]  [Article Influence: 14.8]  [Reference Citation Analysis (0)]
130.  Craven L, Rahman A, Nair Parvathy S, Beaton M, Silverman J, Qumosani K, Hramiak I, Hegele R, Joy T, Meddings J, Urquhart B, Harvie R, McKenzie C, Summers K, Reid G, Burton JP, Silverman M. Allogenic Fecal Microbiota Transplantation in Patients With Nonalcoholic Fatty Liver Disease Improves Abnormal Small Intestinal Permeability: A Randomized Control Trial. Am J Gastroenterol. 2020;115:1055-1065.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 168]  [Cited by in F6Publishing: 183]  [Article Influence: 45.8]  [Reference Citation Analysis (0)]
131.  Liang M, Liwen Z, Jianguo S, Juan D, Fei D, Yin Z, Changping W, Jianping C. Fecal Microbiota Transplantation Controls Progression of Experimental Autoimmune Hepatitis in Mice by Modulating the TFR/TFH Immune Imbalance and Intestinal Microbiota Composition. Front Immunol. 2021;12:728723.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 24]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
132.  Xue L, Deng Z, Luo W, He X, Chen Y. Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front Cell Infect Microbiol. 2022;12:759306.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 92]  [Cited by in F6Publishing: 85]  [Article Influence: 42.5]  [Reference Citation Analysis (0)]
133.  Lambert JE, Parnell JA, Eksteen B, Raman M, Bomhof MR, Rioux KP, Madsen KL, Reimer RA. Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: a randomized controlled trial protocol. BMC Gastroenterol. 2015;15:169.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 46]  [Cited by in F6Publishing: 47]  [Article Influence: 5.2]  [Reference Citation Analysis (0)]
134.  Scorletti E, Afolabi PR, Miles EA, Smith DE, Almehmadi A, Alshathry A, Childs CE, Del Fabbro S, Bilson J, Moyses HE, Clough GF, Sethi JK, Patel J, Wright M, Breen DJ, Peebles C, Darekar A, Aspinall R, Fowell AJ, Dowman JK, Nobili V, Targher G, Delzenne NM, Bindels LB, Calder PC, Byrne CD. Synbiotics Alter Fecal Microbiomes, But Not Liver Fat or Fibrosis, in a Randomized Trial of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2020;158:1597-1610.e7.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 79]  [Cited by in F6Publishing: 131]  [Article Influence: 32.8]  [Reference Citation Analysis (0)]