1 |
Qiao S, Pang S, Luo G, Pan S, Yu Z, Chen T, Lv Z. RLDS: An explainable residual learning diagnosis system for fetal congenital heart disease. Future Generation Computer Systems 2022;128:205-18. [DOI: 10.1016/j.future.2021.10.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
2 |
Garcia Santa Cruz B, Bossa MN, Sölter J, Husch AD. Public Covid-19 X-ray datasets and their impact on model bias - A systematic review of a significant problem. Med Image Anal 2021;74:102225. [PMID: 34597937 DOI: 10.1016/j.media.2021.102225] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Born J, Beymer D, Rajan D, Coy A, Mukherjee VV, Manica M, Prasanna P, Ballah D, Guindy M, Shaham D, Shah PL, Karteris E, Robertus JL, Gabrani M, Rosen-Zvi M. On the role of artificial intelligence in medical imaging of COVID-19. Patterns (N Y) 2021;2:100269. [PMID: 33969323 DOI: 10.1016/j.patter.2021.100269] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Wang J, Yang X, Zhou B, Sohn JJ, Zhou J, Jacob JT, Higgins KA, Bradley JD, Liu T. Review of Machine Learning in Lung Ultrasound in COVID-19 Pandemic. J Imaging 2022;8:65. [DOI: 10.3390/jimaging8030065] [Reference Citation Analysis]
|
5 |
Zhao L, Lediju Bell MA. A Review of Deep Learning Applications in Lung Ultrasound Imaging of COVID-19 Patients. BME Frontiers 2022;2022:1-17. [DOI: 10.34133/2022/9780173] [Reference Citation Analysis]
|
6 |
Camacho J, Muñoz M, Genovés V, Herraiz JL, Ortega I, Belarra A, González R, Sánchez D, Giacchetta RC, Trueba-vicente Á, Tung-chen Y. Artificial Intelligence and Democratization of the Use of Lung Ultrasound in COVID-19: On the Feasibility of Automatic Calculation of Lung Ultrasound Score. IJTM 2022;2:17-25. [DOI: 10.3390/ijtm2010002] [Reference Citation Analysis]
|
7 |
De Rosa L, L'Abbate S, Kusmic C, Faita F. Applications of artificial intelligence in lung ultrasound: Review of deep learning methods for COVID-19 fighting. Artif Intell Med Imaging 2022; 3(2): 42-54 [DOI: 10.35711/aimi.v3.i2.42] [Reference Citation Analysis]
|