BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Budd S, Robinson EC, Kainz B. A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med Image Anal 2021;71:102062. [PMID: 33901992 DOI: 10.1016/j.media.2021.102062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Altini N, Prencipe B, Cascarano GD, Brunetti A, Brunetti G, Triggiani V, Carnimeo L, Marino F, Guerriero A, Villani L, Scardapane A, Bevilacqua V. Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: A survey. Neurocomputing 2022;490:30-53. [DOI: 10.1016/j.neucom.2021.08.157] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Morales S, Engan K, Naranjo V. Artificial intelligence in computational pathology – challenges and future directions. Digital Signal Processing 2021;119:103196. [DOI: 10.1016/j.dsp.2021.103196] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Paleyes A, Urma R, Lawrence ND. Challenges in Deploying Machine Learning: a Survey of Case Studies. ACM Comput Surv . [DOI: 10.1145/3533378] [Reference Citation Analysis]
4 Kerrigan D, Hullman J, Bertini E. A Survey of Domain Knowledge Elicitation in Applied Machine Learning. MTI 2021;5:73. [DOI: 10.3390/mti5120073] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Korot E, Gonçalves MB, Khan SM, Struyven R, Wagner SK, Keane PA. Clinician-driven artificial intelligence in ophthalmology: resources enabling democratization. Curr Opin Ophthalmol 2021;32:445-51. [PMID: 34265784 DOI: 10.1097/ICU.0000000000000785] [Reference Citation Analysis]
6 Jiao Y, Yuan J, Qiang Y, Fei S. Deep embeddings and logistic regression for rapid active learning in histopathological images. Comput Methods Programs Biomed 2021;212:106464. [PMID: 34736166 DOI: 10.1016/j.cmpb.2021.106464] [Reference Citation Analysis]
7 Shanker R, Bhattacharya M. Classification of brain MR images using Modified version of Simplified Pulse-Coupled Neural Network and Linear Programming Twin Support Vector Machines. J Supercomput. [DOI: 10.1007/s11227-022-04420-8] [Reference Citation Analysis]
8 Zhuang H, Zhang J, Liao F. A systematic review on application of deep learning in digestive system image processing. Vis Comput 2021;:1-16. [PMID: 34744231 DOI: 10.1007/s00371-021-02322-z] [Reference Citation Analysis]
9 Ren P, Xiao Y, Chang X, Huang P, Li Z, Gupta BB, Chen X, Wang X. A Survey of Deep Active Learning. ACM Comput Surv 2022;54:1-40. [DOI: 10.1145/3472291] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Lee J, Chung SW. Deep Learning for Orthopedic Disease Based on Medical Image Analysis: Present and Future. Applied Sciences 2022;12:681. [DOI: 10.3390/app12020681] [Reference Citation Analysis]
11 Li J, Chen J, Bai H, Wang H, Hao S, Ding Y, Peng B, Zhang J, Li L, Huang W. An Overview of Organs-on-Chips Based on Deep Learning. Research (Wash D C) 2022;2022:9869518. [PMID: 35136860 DOI: 10.34133/2022/9869518] [Reference Citation Analysis]
12 Ponti M, Seredko A. Human-machine-learning integration and task allocation in citizen science. Humanit Soc Sci Commun 2022;9. [DOI: 10.1057/s41599-022-01049-z] [Reference Citation Analysis]
13 Mougeot G, Dubos T, Chausse F, Péry E, Graumann K, Tatout C, Evans DE, Desset S. Deep learning -- promises for 3D nuclear imaging: a guide for biologists. J Cell Sci 2022;135:jcs258986. [PMID: 35420128 DOI: 10.1242/jcs.258986] [Reference Citation Analysis]