For: | Lyu SY, Zhang Y, Zhang MW, Zhang BS, Gao LB, Bai LT, Wang J. Diagnostic value of artificial intelligence automatic detection systems for breast BI-RADS 4 nodules. World J Clin Cases 2022; 10(2): 518-527 [PMID: 35097077 DOI: 10.12998/wjcc.v10.i2.518] |
---|---|
URL: | https://www.wjgnet.com/1949-8470/full/v10/i2/518.htm |
Number | Citing Articles |
1 |
Arvin Arian, Konstantinos Dinas, Georgios Chrysostomos Pratilas, Sadaf Alipour. The Breast Imaging-Reporting and Data System (BI-RADS) Made Easy. Iranian Journal of Radiology 2022; 19(1) doi: 10.5812/iranjradiol-121155
|
2 |
Sadam Hussain, Usman Naseem, Mansoor Ali, Daly Betzabeth Avendaño Avalos, Servando Cardona-Huerta, Beatriz Alejandra Bosques Palomo, Jose Gerardo Tamez-Peña. TECRR: a benchmark dataset of radiological reports for BI-RADS classification with machine learning, deep learning, and large language model baselines. BMC Medical Informatics and Decision Making 2024; 24(1) doi: 10.1186/s12911-024-02717-7
|
3 |
Paolo De Marco, Valerio Ricciardi, Marta Montesano, Enrico Cassano, Daniela Origgi. Transfer learning classification of suspicious lesions on breast ultrasound: is there room to avoid biopsies of benign lesions?. European Radiology Experimental 2024; 8(1) doi: 10.1186/s41747-024-00480-y
|
4 |
Nicole Brunetti, Massimo Calabrese, Carlo Martinoli, Alberto Stefano Tagliafico. Artificial Intelligence in Breast Ultrasound: From Diagnosis to Prognosis—A Rapid Review. Diagnostics 2022; 13(1): 58 doi: 10.3390/diagnostics13010058
|
5 |
Giovanni Irmici, Maurizio Cè, Gianmarco Della Pepa, Elisa D'Ascoli, Claudia De Berardinis, Emilia Giambersio, Lidia Rabiolo, Ludovica La Rocca, Serena Carriero, Catherine Depretto, Gianfranco Scaperrotta, Michaela Cellina.
Exploring the Potential of Artificial Intelligence in Breast Ultrasound
. Critical Reviews™ in Oncogenesis 2024; 29(2): 15 doi: 10.1615/CritRevOncog.2023048873
|
6 |
Linxin Yang, Ning Lin, Mingyan Wang, Gaofang Chen. Diagnostic efficiency of existing guidelines and the AI-SONIC™ artificial intelligence for ultrasound-based risk assessment of thyroid nodules. Frontiers in Endocrinology 2023; 14 doi: 10.3389/fendo.2023.1116550
|
7 |
Olga Guiban, Antonello Rubini, Gianfranco Vallone, Corrado Caiazzo, Marco Di Serafino, Federica Pediconi, Laura Ballesio, Federica Trenta, Corrado De Vito, Arenta Shkelqimi, Ludovica Costanzo, Daniele Fresilli, Veronica Rizzo, Vito Cantisani, Massimo Vergine. Can New Ultrasound Imaging Techniques Improve Breast Lesion Characterization? Prospective Comparison between Ultrasound BI-RADS and Semi-Automatic Software “SmartBreast”, Strain Elastography, and Shear Wave Elastography. Applied Sciences 2023; 13(11): 6764 doi: 10.3390/app13116764
|
8 |
Belinda Lokaj, Marie-Thérèse Pugliese, Karen Kinkel, Christian Lovis, Jérôme Schmid. Barriers and facilitators of artificial intelligence conception and implementation for breast imaging diagnosis in clinical practice: a scoping review. European Radiology 2023; 34(3): 2096 doi: 10.1007/s00330-023-10181-6
|
9 |
I. P. C. Buzatto, S. A. Recife, L. Miguel, R. M. Bonini, N. Onari, A. L. P. A. Faim, L. Silvestre, D. P. Carlotti, A. Fröhlich, D. G. Tiezzi. Machine learning can reliably predict malignancy of breast lesions based on clinical and ultrasonographic features. Breast Cancer Research and Treatment 2024; doi: 10.1007/s10549-024-07429-0
|