Reddy K, Khaliq A, Henning RJ. Recent advances in the diagnosis and treatment of acute myocardial infarction. World J Cardiol 2015; 7(5): 243-276 [PMID: 26015857 DOI: 10.4330/wjc.v7.i5.243]
Corresponding Author of This Article
Robert J Henning, MD, Department of Medicine, James A Haley Veterans Administration Hospital and the University of South Florida College of Medicine, 13000 Bruce B Downs Blvd, Tampa, FL 33612, United States. robert.henning@va.gov
Research Domain of This Article
Cardiac & Cardiovascular Systems
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Table 2 Electrocardiogram manifestations of acute myocardial ischemia (in absence of left ventricular hypertrophy and left bundle branch block)
ST elevation
New ST elevation at the J point in two contiguous leads with the cut-points:
≥ 0.1 mV in all leads other than leads V2–V3 where the following cut points apply: ≥ 0.2 mV in men ≥ 40 yr; ≥ 0.25 mV in men < 40 yr, or ≥ 0.15 mV in women
ST depression and T wave changes
New horizontal or down-sloping ST depression ≥ 0.05 mV in two contiguous
leads and/or T inversion ≥ 0.1 mV in two contiguous leads with prominent R wave or R/S ratio > 1
Table 3 Third universal classification of myocardial infarction
Type 1: Spontaneous MI
Spontaneous MI due to atherosclerotic plaque rupture, ulceration, fissuring, erosion, or dissection with resulting intraluminal thrombus in one or more of the coronary arteries leading to decreased myocardial blood flow or distal platelet emboli with ensuing myocyte necrosis. The patient may have underlying severe CAD, non-obstructive coronary disease or no CAD
Type 2: MI secondary to an ischemic imbalance
Myocardial injury with necrosis occurs due to conditions other than CAD that contribute to an imbalance between myocardial oxygen supply and/or demand such as coronary endothelial dysfunction, coronary artery spasm, coronary embolism, tachycardia-bradycardia arrhythmias, anemia, respiratory failure, hypotension, and hypertension
Type 3: MI resulting in death when biomarker values are unavailable
Cardiac death with symptoms suggestive of myocardial ischemia and presumed new ischemic ECG changes or new LBBB, but death occurs before blood samples can be obtained, before cardiac troponins biomarkers rise, or when cardiac biomarkers were not collected
Type 4A: MI related to percutaneous coronary intervention
MI associated with PCI is defined by elevation of cTn values greater than five times the 99th percentile upper normal reference limit (URL) in patients with normal baseline values (< 99th percentile URL) or a rise of cTn values by > 20% if the baseline troponins are elevated and are stable or falling. In addition one of the following criterion are required: (1) symptoms suggestive of myocardial ischemia; (2) new ischemic ECG changes or new LBBB; (3) angiographic loss of patency of a major coronary artery or a side branch or persistent slow- or no coronary flow or coronary embolization; or (4) demonstration with imaging of a new loss of viable myocardium or new regional wall motion abnormality
Type 4B: MI related to stent thrombosis
MI associated with stent thrombosis detected by coronary angiography or autopsy in the presence of myocardial ischemia with a rise and/or fall of troponin biomarkers. One troponin measurement should be above the 99th percentile UR
Type 4C: MI related to restenosis
MI associated with restenosis defined as ≥ 50% stenosis or a complex lesion demonstrated at coronary angiography after (1) initial successful stent deployment; or (2) dilatation of a coronary artery stenosis with balloon angioplasty. These coronary angiographic changes should be associated with an increase and/or decrease of cTn values > 99th percentile URL and no other significant obstructive CAD
Type 5: MI related to coronary artery bypass grafting
MI associated with CABG is defined by elevation of cardiac troponins greater than ten times the 99th percentile URL in patients with normal baseline cTn values (< 99th percentile URL). In addition, one of the following should be present: (1) new pathological Q waves or new LBBB; or (2) angiographic documented new graft or new native coronary artery occlusion; or (3) new loss of viable myocardium or new regional wall motion abnormality as shown by an imaging modality
Table 4 Proposed definition of clinically relevant myocardial infarction after both percutaneous coronary intervention and coronary artery bypass grafting procedures
In patients with normal baseline CK-MB
The peak CK-MB measured within 48 h of the procedure rises to ≥ 10 × the local laboratory ULN, or to ≥ 5 × ULN with new pathologic Q-waves in ≥ 2 contiguous leads or new persistent LBBB, OR in the absence of CK-MB measurements and a normal baseline cTn, a cTn (I or T) level measured within 48 h of the PCI rises to ≥ 70 × the local laboratory ULN, or ≥ 35 × ULN with new pathologic Q-waves in ≥ 2 contiguous leads or new persistent LBBB
In patients with elevated baseline CK-MB (or cTn) in whom the biomarker levels are stable or falling
The CK-MB (or cTn) rises by an absolute increment equal to those levels recommended above from the most recent pre-procedure level
In patients with elevated CK-MB (or cTn) in whom the biomarker levels have not been shown to be stable or falling
The CK-MB (or cTn) rises by an absolute increment equal to those levels recommended above plus new ST-segment elevation or depression plus signs consistent with a clinically relevant MI, such as new onset or worsening heart failure or sustained hypotension
Table 5 Bone marrow and circulating progenitor cells in coronary artery disease patients
↑ EF when Rx > 4 d post MI and when EF < 48.9%; ↑ LV perfusion
Citation: Reddy K, Khaliq A, Henning RJ. Recent advances in the diagnosis and treatment of acute myocardial infarction. World J Cardiol 2015; 7(5): 243-276