Copyright
©The Author(s) 2020.
World J Biol Chem. Apr 7, 2020; 11(1): 1-13
Published online Apr 7, 2020. doi: 10.4331/wjbc.v11.i1.1
Published online Apr 7, 2020. doi: 10.4331/wjbc.v11.i1.1
Table 1 Phenotype, phylogroup and prevalence of virulence genes found to be more frequent in adherent-invasive Escherichia coli than non-adherent-invasive Escherichia coli strains in PCR-based and genomic studies
Virulence gene | Group of study (n) | Phylogroup (n)1 | Prevalence (%) | ||||||
AIEC | non-AIEC | A | B1 | B2 | D | Others | AIEC | non-AIEC | |
malX[37] | 49 | 1342 | 39 | 19 | 98 | 19 | 8 | 71 | 47 |
kpsMTII[37] | 49 | 1342 | 39 | 19 | 98 | 19 | 8 | 71 | 52 |
pduC[31] | 24 | 25 | 14 | 16 | 10 | 9 | 0 | 50 | 20 |
lpfA[31] | 24 | 25 | 14 | 16 | 10 | 9 | 0 | 71 | 20 |
lpfA + gipA[39] | 35 | 103 | Undetermined | 31 | 0 | ||||
chuA[13] | 15 | 37 | 11 | 5 | 18 | 18 | 0 | 93 | 59 |
ibeA[40] | 19 | 57 | Undetermined | 37 | 3 | ||||
colV[40] | 19 | 57 | Undetermined | 42 | 16 | ||||
vat[38] | 22 | 37 | 9 | 8 | 29 | 12 | 1 | 59 | 30 |
pic[38] | 22 | 37 | 9 | 8 | 29 | 12 | 1 | 41 | 16 |
papGII/III[38] | 22 | 37 | 9 | 8 | 29 | 12 | 1 | 18 | 0 |
iss[38] | 22 | 37 | 9 | 8 | 29 | 12 | 1 | 32 | 11 |
Table 2 Review of studies in which the prevalence of particular virulence genes has been examined according to the adherent-invasive Escherichia coli pathotype
Ref. | AIEC | Non-AIEC | Genes studied |
Darfeuille-Michaud et al[1], 2004 | 26 | 0 | afaD, eae, ipaC, tia |
Martinez-Medina et al[11], 2009 | 22 | 38 | afa/draBC, bfpA, cdtB,cnf1, eae, eltA, est, fimAvMT78, fimH, hlyA, ibeA, ipaH, iucD, neuC, papC, pCDV432, sfa/focDE, stx1, stx2 |
Martinez-Medina et al[26], 2009 | 27 | 59 | afa/draBC, bfpA, bmaE, cdtB, cnf1, cvaC, eae, eltA, est, fimA, fimAvMT78, fimH, focG, gafD, hlyA, ibeA ,ipaH, iroN, iucD, kpsMII, kpsMIII, malX, neuC, papC, papGI, papGII, papGIII alleles,pCDV432, sat, sfa/focDE, sfaS, stx1, stx2, traT, usp |
Martinez-Medina et al[37], 2011 | 49 | 134 | afa/draBC, astA, bmaE, chuA, cnf, csgA, cvaB, cvaC, eaI, eitA, eitC, etsB, etsC, fimC, focG, fyuA, gafD, gimB, hlyA, hlyF, hra, ibeA, iha, ireA, iroN, irp2, iss, iucD, iutA, kpsMTII, malX, mat, neuC, nfaE, ompA, ompT, papC, papEF, papGI, papGII, papGII/III, papGIII, pic, pks, sat, sfa/foc, sfaS, sitA, sitD (chr.), sitD (epis.), tia, traT, tsh, vat |
Chassaing et al[5], 2011 | 249 | lpfA | |
Conte et al[16], 2014 | 27 | 0 | afa/draBC, aggR, cnf1, cvaC, fimH, focG, fyuA, gafD, hlyA, ibeA, iutA, kpsMT1, kpsMT5, kpsMTII, kpsMTIII, nfaE, pAA, PAI1, papA, papC, papEF, papG alleles, sfa/focDE, traT |
Vazeille et al[39], 2016 | 35 | 103 | lpfA + gipA |
Céspedes et al[13], 2017 | 15 | 37 | afa/draBC, aufA, cdtB, chuA, cnf1, cvaC, eaaA, eatA, ecNA144, espC, espP, fhuD, fimAvMT78 , fimH, gipA, hlyA, ibeA, irp2, neuC, papC, pet, pic, ratA, sat, sepA, sfa/focDE, sigA, tsh, vat |
Dogan et al[40], 2018 | 19 | 57 | afaC, chuA, cnf1, colV, focG, fyuA, gsp, hcp, ibeA, iss, kpsMII, lpfA, malX, papC, pduC, pmt1, ratA, sfaDE, traC |
Camprubí-Font et al[38], 2019 | 48 | 56 | afa/draBC, bmaE, csgA, fimC, focG, gafD, hra, iha, mat, nfaE, papC, papEF, papGII/III, papGI, papGII, papGIII, sfa/foc, sfaS, tsh, chuA, eitA, eitC, fyuA, ireA, iroN, irp2, iucD, iutA, sitA, sitD, (epis.), sitD (chr.), iss, neuC, kpsMTII, ompA, ompT, traT, astA, cnf, sat, vat, hlyA, hlyF, ibeA, gimB, tia, malX, pic, pks, eaI, cvaB, cvaC, etsB, etsC, lpfA141, lpfA154, fimH, chiA, astA, cnf, sat, vat |
Camprubí-Font et al[46], 2019 | 13 | 30 | ompA, ompC, ompF |
Table 3 Summary of the comparative genomics studies conducted in adherent-invasive Escherichia coli to date
Ref. | AIEC | Non-AIEC | Phylogroup | AIEC origin of isolation |
Miquel et al[27], 2010 | 1 | 211 | AIEC: B2; Commensals: 4A, 2B1, 1B2; ExPEC: 2B1, 6B2, 3D, 3E | From an I-CD patient |
Nash et al[28], 2010 | 2 | 101 | AIEC: B2; Commensals: 2A; ExPEC: 7B2, 1E | From I-CD patients |
Dogan et al[31], 2014 | 24 | 25 | 14 strains from A phylogroup, 16 B1, 10 B2 and 9 D2 | From I-CD patients and controls |
Desilets et al[32], 2015 | 143 | 6 | AIEC: A: 1; B1: 1; B2: 10; D: 1; F: 1. non-AIEC: A: 2; B1: 2; B2: 2 | From CD and UC patients[47] |
Zhang et al[35], 2015 | 13 | 11 | AIEC: 1A, 1B1, 4B2, 1D, 5 Unknown. non-AIEC: 3A, 8 Unknown | From CD and UC patients and non-CD subjects |
Deshpande et al[33], 2015 | 4 | 13071 | All B2 | From CD patients |
O’Brien et al[34], 2015 | 11 | 30 | All B2, ST95 | From IBD patients and controls |
Camprubí-Font et al[36], 2018 | 3 | 3 | AIEC: 1 B1, 1 B2 and 1 D. Non-AIEC: 1 B1, 1 B2 and 1 D | From CD patients and controls |
Table 4 Genetic elements more frequently found in strains from the adherent-invasive Escherichia coli pathotype and suggested as putative adherent-invasive Escherichia coli molecular markers
Marker | Group of study (n) | Prevalence (%) | Sensitivity (%) | Specificity (%) | Accuracy (%) | ||
AIEC | non-AIEC | AIEC | non-AIEC | ||||
pduC[31]1 | 24 | 25 | 50 | 20 | 50 | 80 | 65 |
lpfA[31]1 | 24 | 25 | 71 | 20 | 71 | 80 | 75 |
29 SNPs[33]2 | 4 | 1307 | 100 | 4 | - | - | - |
lpfA + gipA[39] | 35 | 103 | 31 | 0 | 31 | 100 | 83 |
3 genomic regions[32]3 | 14 | 6 | 79 | 0 | 79 | 100 | 85 |
chuA[13]4 | 15 | 37 | 93 | 59 | 93 | 41 | 56 |
SNP algorithm[36] | 22 | 29 | - | - | 82 | 86 | 84 |
pic + ampR[38] | 22 | 27 | 86 | 33 | 86 | 67 | 75 |
Table 5 Comparison of the principal experimental conditions of the protocols used to assess bacterial invasion to intestinal epithelial cells and survival and replication inside macrophages
Invasion assays | |||
MOI | Infection conditions | Incubation conditions | Ref. |
10 | 30 min | 3 h with amikacin 100 µg/mL | [13] |
10 | 1 h | 2 h with gentamicin 100 µg/mL | [70] |
10 or 20 | 3 h | 1 h with gentamicin 100 µg/mL | [1,9,11,14,16,31,34,47,56-60,63-65,71] |
10 | 3 h | 1 h with gentamicin 3 mg/mL | [72] |
100 | 2 h | 1 h with gentamicin 50 µg/mL | [54] |
100 | 3 h | 1 h with gentamicin 50 µg/mL | [62] |
Survival and replication assays | |||
10 | 20 min | Media replacement with gentamicin 100 µg/mL for 40 min and media replacement with gentamicin 50 µg/mL for 24 h | [16] |
10 | 2 h | Media replacement with amikacin 100 µg/mL for 3 and 24 h | [13] |
10 | 2 h | Media replacement with gentamicin 100 µg/mL for 1 h and media replacement with gentamicin 20 µg/mL for 24 h | [1,34,58] |
10 or 100 | Centrifugation 10 min at 1000 g and incubation 10 min | Media replacement with gentamicin 100 µg/mL for 40 min and media replacement with gentamicin 20 µg/mL for 24 h | [11,47,66] |
10 | Centrifugation 5 min at 500 g and incubation 30 min | Media replacement with gentamicin 100 µg/mL for 2 h and media replacement with gentamicin 15 µg/mL for 24 h | [70] |
20 | 2 h | Media replacement with gentamicin 100 µg/mL for 1 h and media replacement with gentamicin 20 µg/mL for 24 h | [9,31] |
20 | 2 h | Media replacement with gentamicin 100 µg/mL for 1 and 24 h | [14] |
20 | 2 h | Media replacement with gentamicin 3 mg/mL for 1 and 24 h | [72] |
100 | Centrifugation 10 min at 1000 g and incubation 10 min | Media replacement with gentamicin 20 µg/mL for 1 and 24 h | [21,59] |
100 | 2 h | Media replacement with gentamicin 50 µg/mL for 1 and 24 h | [54] |
- Citation: Camprubí-Font C, Martinez-Medina M. Why the discovery of adherent-invasive Escherichia coli molecular markers is so challenging? World J Biol Chem 2020; 11(1): 1-13
- URL: https://www.wjgnet.com/1949-8454/full/v11/i1/1.htm
- DOI: https://dx.doi.org/10.4331/wjbc.v11.i1.1