For: | Utkin YN. Last decade update for three-finger toxins: Newly emerging structures and biological activities. World J Biol Chem 2019; 10(1): 17-27 [PMID: 30622682 DOI: 10.4331/wjbc.v10.i1.17] |
---|---|
URL: | https://www.wjgnet.com/1949-8454/full/v10/i1/17.htm |
Number | Citing Articles |
1 |
Maik Damm, Benjamin-Florian Hempel, Roderich D. Süssmuth. Old World Vipers—A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins 2021; 13(6): 427 doi: 10.3390/toxins13060427
|
2 |
Matyas A. Bittenbinder, Liliana Capinha, Daniel Da Costa Pereira, Julien Slagboom, Bas van de Velde, Nicholas R. Casewell, Paul Jennings, Jeroen Kool, Freek J. Vonk, Wayne Hodgson. Development of a high-throughput in vitro screening method for the assessment of cell-damaging activities of snake venoms. PLOS Neglected Tropical Diseases 2023; 17(8): e0011564 doi: 10.1371/journal.pntd.0011564
|
3 |
Subramanian Senthilkumaran, Stephen Miller, Harry Williams, Ponniah Thirumalaikolundusubramanian, Ketan Patel, Sakthivel Vaiyapuri. Bilateral Simultaneous Optic Neuritis Following Envenomations by Indian Cobra and Common Krait. Toxins 2022; 14(11): 805 doi: 10.3390/toxins14110805
|
4 |
C. Ruth Wang, Paul J. Trim, Jacob XM. Truong, Marten F. Snel, Tara L. Pukala. Interrogation of three-finger toxin and phospholipase A2 higher order structures from the forest cobra (Naja melanoleuca) venom using a mass spectrometric approach. International Journal of Mass Spectrometry 2024; 506: 117346 doi: 10.1016/j.ijms.2024.117346
|
5 |
Joseph Espín-Angulo, Doris Vela. Exploring the Venom Gland Transcriptome of Bothrops asper and Bothrops jararaca: De Novo Assembly and Analysis of Novel Toxic Proteins. Toxins 2024; 16(12): 511 doi: 10.3390/toxins16120511
|
6 |
Fatah Chérifi, Fatima Laraba-Djebari. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. The Protein Journal 2021; 40(6): 799 doi: 10.1007/s10930-021-10019-4
|
7 |
Jessica Matos Kleiz-Ferreira, Hans Bernaerts, Ernesto Lopes Pinheiro-Junior, Steve Peigneur, Russolina Benedeta Zingali, Jan Tytgat. Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. International Journal of Molecular Sciences 2022; 23(14): 7714 doi: 10.3390/ijms23147714
|
8 |
Maxim M. Zaigraev, Ekaterina N. Lyukmanova, Alexander S. Paramonov, Zakhar O. Shenkarev, Anton O. Chugunov. Orientational Preferences of GPI-Anchored Ly6/uPAR Proteins. International Journal of Molecular Sciences 2022; 24(1): 11 doi: 10.3390/ijms24010011
|
9 |
Jessica Matos Kleiz-Ferreira, Nuria Cirauqui, Edson Araujo Trajano, Marcius da Silva Almeida, Russolina Benedeta Zingali. Three-Finger Toxins from Brazilian Coral Snakes: From Molecular Framework to Insights in Biological Function. Toxins 2021; 13(5): 328 doi: 10.3390/toxins13050328
|
10 |
Daniel Dashevsky, Darin Rokyta, Nathaniel Frank, Amanda Nouwens, Bryan G. Fry. Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus. Toxins 2021; 13(2): 124 doi: 10.3390/toxins13020124
|
11 |
R. Manjunatha Kini, Cho Yeow Koh. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochemical Pharmacology 2020; 181: 114105 doi: 10.1016/j.bcp.2020.114105
|
12 |
Mieke Nys, Eleftherios Zarkadas, Marijke Brams, Aujan Mehregan, Kumiko Kambara, Jeroen Kool, Nicholas R. Casewell, Daniel Bertrand, John E. Baenziger, Hugues Nury, Chris Ulens. The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nature Communications 2022; 13(1) doi: 10.1038/s41467-022-32174-7
|
13 |
Paola Rey-Suárez, Mónica Saldarriaga-Córdoba, Uday Torres, Marcel Marin-Villa, Bruno Lomonte, Vitelbina Núñez. Novel three-finger toxins from Micrurus dumerilii and Micrurus mipartitus coral snake venoms: Phylogenetic relationships and characterization of Clarkitoxin-I-Mdum. Toxicon 2019; 170: 85 doi: 10.1016/j.toxicon.2019.09.017
|
14 |
Lou Freuville, Chloé Matthys, Loïc Quinton, Jean-Pierre Gillet. Venom-derived peptides for breaking through the glass ceiling of drug development. Frontiers in Chemistry 2024; 12 doi: 10.3389/fchem.2024.1465459
|
15 |
R. Marshall Werner, Allison N. Soffa. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon: X 2023; 20: 100169 doi: 10.1016/j.toxcx.2023.100169
|
16 |
Kristy Srodawa, Peter A. Cerda, Alison R. Davis Rabosky, Jenna M. Crowe-Riddell. Evolution of Three-Finger Toxin Genes in Neotropical Colubrine Snakes (Colubridae). Toxins 2023; 15(9): 523 doi: 10.3390/toxins15090523
|
17 |
Yuanqing Wei, Ting Liu, Binru Zheng, Yilin Song, Shengsong Wang, Mojuan Zheng, Yanling Xu, Yumei Chi, Ming Zhao, Jin‐ao Duan, Shuying Han, Rui Liu. A strategy for the enrichment and characterization of disulfide bond‐contained proteins from Chinese cobra (Naja atra) venom. Journal of Separation Science 2022; 45(4): 812 doi: 10.1002/jssc.202100620
|
18 |
Igor E. Kasheverov, Peter B. Oparin, Maxim N. Zhmak, Natalya S. Egorova, Igor A. Ivanov, Andrei M. Gigolaev, Oksana V. Nekrasova, Marina V. Serebryakova, Denis S. Kudryavtsev, Nikita A. Prokopev, Anh N. Hoang, Victor I. Tsetlin, Alexander A. Vassilevski, Yuri N. Utkin. Scorpion toxins interact with nicotinic acetylcholine receptors. FEBS Letters 2019; 593(19): 2779 doi: 10.1002/1873-3468.13530
|
19 |
Bhargab Kalita, Yuri N. Utkin, Ashis K. Mukherjee. Current Insights in the Mechanisms of Cobra Venom Cytotoxins and Their Complexes in Inducing Toxicity: Implications in Antivenom Therapy. Toxins 2022; 14(12): 839 doi: 10.3390/toxins14120839
|
20 |
Tam M. Huynh, Anjana Silva, Geoffrey K. Isbister, Wayne C. Hodgson. Isolation and Pharmacological Characterization of α-Elapitoxin-Oh3a, a Long-Chain Post-Synaptic Neurotoxin From King Cobra (Ophiophagus hannah) Venom. Frontiers in Pharmacology 2022; 13 doi: 10.3389/fphar.2022.815069
|
21 |
Mátyás A. Bittenbinder, Flavio Bonanini, Dorota Kurek, Paul Vulto, Jeroen Kool, Freek J. Vonk. Using organ-on-a-chip technology to study haemorrhagic activities of snake venoms on endothelial tubules. Scientific Reports 2024; 14(1) doi: 10.1038/s41598-024-60282-5
|
22 |
Jiong Ning, Jie Ren, Yang Xiong, Yong Wu, Manqi Zhangsun, Dongting Zhangsun, Xiaopeng Zhu, Sulan Luo. Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor. Toxins 2019; 11(10): 603 doi: 10.3390/toxins11100603
|
23 |
Peter V. Dubovskii, Kira M. Dubova, Gleb Bourenkov, Vladislav G. Starkov, Anastasia G. Konshina, Roman G. Efremov, Yuri N. Utkin, Valeriya R. Samygina. Variability in the Spatial Structure of the Central Loop in Cobra Cytotoxins Revealed by X-ray Analysis and Molecular Modeling. Toxins 2022; 14(2): 149 doi: 10.3390/toxins14020149
|
24 |
Kim N. Kirchhoff, André Billion, Christian R. Voolstra, Stephan Kremb, Thomas Wilke, Andreas Vilcinskas. Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Marine Drugs 2021; 20(1): 27 doi: 10.3390/md20010027
|
25 |
Muralidharan Vanuopadath, Dileepkumar Raveendran, Bipin Gopalakrishnan Nair, Sudarslal Sadasivan Nair. Venomics and antivenomics of Indian spectacled cobra (Naja naja) from the Western Ghats. Acta Tropica 2022; 228: 106324 doi: 10.1016/j.actatropica.2022.106324
|
26 |
Alexey Osipov, Yuri Utkin. What Are the Neurotoxins in Hemotoxic Snake Venoms?. International Journal of Molecular Sciences 2023; 24(3): 2919 doi: 10.3390/ijms24032919
|
27 |
R. R. Senji Laxme, Suyog Khochare, Hugo Francisco de Souza, Bharat Ahuja, Vivek Suranse, Gerard Martin, Romulus Whitaker, Kartik Sunagar, Philippe BILLIALD. Beyond the ‘big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLOS Neglected Tropical Diseases 2019; 13(12): e0007899 doi: 10.1371/journal.pntd.0007899
|
28 |
Talulla B. Palumbo, Julie.M. Miwa. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacological Research 2023; 194: 106845 doi: 10.1016/j.phrs.2023.106845
|
29 |
Giulia Palermo, Wietse M. Schouten, Luis Lago Alonso, Chris Ulens, Jeroen Kool, Julien Slagboom. Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification. International Journal of Molecular Sciences 2023; 24(23): 16769 doi: 10.3390/ijms242316769
|
30 |
Victor I. Tsetlin, Igor E. Kasheverov, Yuri N. Utkin. Three‐finger proteins from snakes and humans acting on nicotinic receptors: Old and new. Journal of Neurochemistry 2021; 158(6): 1223 doi: 10.1111/jnc.15123
|
31 |
Yi-Jun Shi, Jing-Ting Chiou, Liang-Jun Wang, Chia-Hui Huang, Yuan-Chin Lee, Ying-Jung Chen, Long-Sen Chang. Blocking of negative charged carboxyl groups converts Naja atra neurotoxin to cardiotoxin-like protein. International Journal of Biological Macromolecules 2020; 164: 2953 doi: 10.1016/j.ijbiomac.2020.08.163
|
32 |
Kin Ying Wong, Kae Yi Tan, Nget Hong Tan, Christeine Ariaranee Gnanathasan, Choo Hock Tan. Elucidating the Venom Diversity in Sri Lankan Spectacled Cobra (Naja naja) through De Novo Venom Gland Transcriptomics, Venom Proteomics and Toxicity Neutralization. Toxins 2021; 13(8): 558 doi: 10.3390/toxins13080558
|
33 |
Ivan Koludarov, Tobias Senoner, Timothy N. W. Jackson, Daniel Dashevsky, Michael Heinzinger, Steven D. Aird, Burkhard Rost. Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily. Nature Communications 2023; 14(1) doi: 10.1038/s41467-023-40550-0
|
34 |
Abhishek Chanda, Ashis K. Mukherjee. Mass spectrometric analysis to unravel the venom proteome composition of Indian snakes: opening new avenues in clinical research. Expert Review of Proteomics 2020; 17(5): 411 doi: 10.1080/14789450.2020.1778471
|
35 |
Tristan Cardon, Isabelle Fournier, Michel Salzet. Shedding Light on the Ghost Proteome. Trends in Biochemical Sciences 2021; 46(3): 239 doi: 10.1016/j.tibs.2020.10.003
|
36 |
Carlos A. Cañas, Santiago Castaño-Valencia, Fernando Castro-Herrera, Felipe Cañas, Gabriel J. Tobón. Biomedical applications of snake venom: from basic science to autoimmunity and rheumatology. Journal of Translational Autoimmunity 2021; 4: 100076 doi: 10.1016/j.jtauto.2020.100076
|
37 |
Orsolya Péterfi, Francisc Boda, Zoltán Szabó, Elek Ferencz, László Bába. Hypotensive Snake Venom Components—A Mini-Review. Molecules 2019; 24(15): 2778 doi: 10.3390/molecules24152778
|
38 |
Bhargab Kalita, Ashis K. Mukherjee. Recent advances in snake venom proteomics research in India: a new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. Journal of Proteins and Proteomics 2019; 10(2): 149 doi: 10.1007/s42485-019-00014-w
|
39 |
Igor E. Kasheverov, Alexey I. Kuzmenkov, Denis S. Kudryavtsev, Ivan S. Chudetskiy, Irina V. Shelukhina, Evgeny P. Barykin, Igor A. Ivanov, Andrei E. Siniavin, Rustam H. Ziganshin, Mikhail S. Baranov, Victor I. Tsetlin, Alexander A. Vassilevski, Yuri N. Utkin. Snake Toxins Labeled by Green Fluorescent Protein or Its Synthetic Chromophore are New Probes for Nicotinic acetylcholine Receptors. Frontiers in Molecular Biosciences 2021; 8 doi: 10.3389/fmolb.2021.753283
|
40 |
O.V. Sokolova, V.L. Popov. Pathomorphological characteristics of sequelae of the black mamba bite. Sudebno-meditsinskaya ekspertiza 2023; 66(2): 60 doi: 10.17116/sudmed20236602160
|
41 |
Saurabh Bhargava, Kiran Kumari, Rajendra Kumar Sarin, Rajvinder Singh, Krishna K Verma. Comparative Snake Venom Analysis for Facilitating Wildlife Forensics: A Pilot Study. Journal of Analytical Methods in Chemistry 2022; 2022: 1 doi: 10.1155/2022/8644993
|
42 |
Anna Damsbo, Charlotte Rimbault, Nick J. Burlet, Anneline Vlamynck, Ida Bisbo, Selma B. Belfakir, Andreas H. Laustsen, Esperanza Rivera-de-Torre. A comparative study of the performance of E. coli and K. phaffii for expressing α-cobratoxin. Toxicon 2024; 239: 107613 doi: 10.1016/j.toxicon.2024.107613
|
43 |
Sher Min Ding, Michelle Khai Khun Yap. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250: 108120 doi: 10.1016/j.toxicon.2024.108120
|
44 |
Jing-Ting Chiou, Liang-Jun Wang, Yuan-Chin Lee, Long-Sen Chang. Naja atra Cardiotoxin 1 Induces the FasL/Fas Death Pathway in Human Leukemia Cells. Cells 2021; 10(8): 2073 doi: 10.3390/cells10082073
|
45 |
Anas Bedraoui, Montamas Suntravat, Salim El Mejjad, Salwa Enezari, Naoual Oukkache, Elda E. Sanchez, Jacob A. Galan, Rachid El Fatimy, Tariq Daouda. Therapeutic potential of snake venom: Toxin distribution and opportunities in deep learning for novel drug discovery. Medicine in Drug Discovery 2024; 21: 100175 doi: 10.1016/j.medidd.2023.100175
|
46 |
Camila R. Ferraz, Arif Arrahman, Chunfang Xie, Nicholas R. Casewell, Richard J. Lewis, Jeroen Kool, Fernanda C. Cardoso. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Frontiers in Ecology and Evolution 2019; 7 doi: 10.3389/fevo.2019.00218
|
47 |
Henrique Roman-Ramos, Álvaro R. B. Prieto-da-Silva, Humberto Dellê, Rafael S. Floriano, Lourdes Dias, Stephen Hyslop, Raphael Schezaro-Ramos, Denis Servent, Gilles Mourier, Jéssica Lopes de Oliveira, Douglas Edgard Lemes, Letícia V. Costa-Lotufo, Jane S. Oliveira, Milene Cristina Menezes, Regina P. Markus, Paulo Lee Ho. The Cloning and Characterization of a Three-Finger Toxin Homolog (NXH8) from the Coralsnake Micrurus corallinus That Interacts with Skeletal Muscle Nicotinic Acetylcholine Receptors. Toxins 2024; 16(4): 164 doi: 10.3390/toxins16040164
|
48 |
Angeline Mei Feng Oh, Kae Yi Tan, Nget Hong Tan, Choo Hock Tan. Proteomics and neutralization of Bungarus multicinctus (Many-banded Krait) venom: Intra-specific comparisons between specimens from China and Taiwan. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2021; 247: 109063 doi: 10.1016/j.cbpc.2021.109063
|