Review
Copyright ©The Author(s) 2015.
World J Diabetes. Jul 10, 2015; 6(7): 943-960
Published online Jul 10, 2015. doi: 10.4239/wjd.v6.i7.943
Table 1 Reported subcellular alterations to cardiomyocyte structure and function in early type 1 and type 2 diabetes and gaps in our current knowledge
Cardiomyocyte function changeType 1 diabetesType 2 diabetes
Excitation-contraction(-) ↑↑↑ cTnI phosphorylation[181]↑ Ca2+ transient times[113]
coupling, calcium release-(-) cTnI phosphorylation, Ca2+ sensitivity[123]↑ SERCA expression, SR Ca2+ reuptake[115]
reuptake and calcium↑ PKCβ2 mediated AGE increase, Ca2+ release[50]↓ SERCA, RyR expression[111,112]
sensitivity↓ SERCA activity[107,109,110]↑ SR Ca2+ reuptake time[111,112]
↓ SERCA and RyR expression[110]
↓ Diastolic Ca2+ extrusion[109]
↑ SR Ca2+ reuptake time[108,109]
Aerobic energy production(-)(-) ATP turnover1[125]?
Sarcomere organization(-) Myofibrillar, sarcomeric order[130]?
Contractile force development(-)↑ Systolic LV pressure, CB formation[139]
↓ Myosin, myofibrillar ATPase activity[117-120,143]?
↓ CB cycling, myosin-actin proximity[101,123,124]
↓ MLC2 phosphorylation, (-) cMyBP-C phosphorylation[123]
↑ ROCK expression, (-) nitrosylation[102]
Contractile force transmission,↑ V3 myosin isozyme expression[117,122-124]↑ Diastolic myosin head separation[139]
sliding velocity and↓ Myosin head extension[101]↑ Ventricular, myocyte relaxation[111,112]
compliance↓ Relaxation rate[101,123,124]↑ Shortening time[113]
↓ MLC2 phosphorylation, (-) cMyBP-C phosphorylation[123]↑ Relaxation time[114]
↑ Nitrosylation, lipid peroxidation, prolonged relaxation[43,44]
Cardiomyocyte hypertrophy↑ ANGII mediated oxidative stress[72]↑ ANGII mediated NADPH Ox[70]
and apoptosis↑ PKCβ2 mediated oxidative stress, apoptosis[50]
↑ PKCβ2 mediated oxidative stress, hypertrophy[85]