Review
Copyright ©2014 Baishideng Publishing Group Inc.
World J Diabetes. Aug 15, 2014; 5(4): 536-545
Published online Aug 15, 2014. doi: 10.4239/wjd.v5.i4.536
Table 1 Studies which observed glucose reduction carvedilol
Ref.Study designParticipantsMain results
Ehmer et al[30]Prospective randomized open parallel group trial49 non-insulin-dependent diabetics with mild to moderate HTN (carvedilol n = 25, metoprolol n = 24)Blood glucose concentrations were maintained within narrow limits. Glycated haemoglobin A1 remained unchanged. There was a reduction in blood pressure in both groups
Giugliano et al[12]Prospective single-blind randomized trial45 patients with non-insulin-dependent DM and HTN (carvedilol n = 23, atenolol n = 22)Patients treated with carvedilol had improved glucose and lipid metabolism and reduced lipid perioxidation compared to atenolol. Both reduced blood pressure
Bakris et al[11]Prospective double-blind randomized trialGEMINI study, 1235 patients with HTN and T2DM (carvedilol n = 498, metoprolol tartrate n = 737)The mean glycosylated hemoglobin increased with metoprolol, but not with carvedilol. An improvement of insulin sensitivity was seen with carvedilol but not with metoprolol
Phillips et al[32]Prospective double-blind randomized trialGEMINI study 1235 patients with HTN and T2DM (carvedilol n = 498, metoprolol tartrate n = 737)After and adjustment for age carvedilol was superior than metoprolol reducing baseline glycosylated hemoglobin and also in female patients. In black people carvedilol showed a reduction in IR greater than metoprolol
Kveiborg et al[40]Prospective randomized open parallel group trial19 patients with T2DM (metoprolol succinate n = 10, carvedilol n = 9) and 10 controlsTreatment with carvedilol did not change insulin-stimulated endothelial function, whereas it deteriorated with metoprolol
Torp-Pedersen et al[46]Prospective double-blind randomized trial3029 patients with chronic heart failure and T2DM (carvedilol n = 1511, metoprolol tartrate n = 1518)Fewer patients treated with carvedilol developed T2DM than with metoprolol
Wai et al[47]Observational cohort trial125 patients with T2DM and heart failure (carvedilol n = 80, bisoprolol n = 45)Carvedilol significantly improved glycemic control in subjects with heart failure and T2DM
Basat et al[48]Prospective double-blind randomized trial59 patients with ST-elevation myocardial infarction (carvedilol n = 26, metoprolol n = 31)After myocardial infarction, carvedilol added to background therapy improved insulin resistance and lipid profile
Table 2 Studies which observed glucose reduction after renal denervation
Ref.Study designParticipantsMain results
Mahfoud et al[14]Prospective, controlled unblinded, randomized study50 patients with resistant HTN (37 patients underwent catheter-based RDN and 13 patients in a control groupRDN improved glucose metabolism and insulin sensitivity in addition to a significantly reducing blood pressure
Witkowski et al[65]Prospective, nonrandomized, open-label study10 patients with refractory hypertension and sleep apnea (7 men and 3 women, who underwent RDN)RDN reduced blood pressure and improved glucose metabolism
Table 3 Comparison between carvedilol and renal denervation as therapeutic choices to reduce blood pressure and glucose levels in hypertensive type 2 diabetes mellitus patients
Therapeutic methodMechanism of actionMedical indicationMechanisms which explain glucose reductionContraindicationsSide effects
Carvedilolα1, non-selective β-blocker, antioxidant and calcium antagonist properties[17-20]Treatment of hypertension[21] heart failure[25] and coronary artery disease[27]An improvement in insulin sensitivity by a reduction in sympathetic nerve activity[74,75] and free radicals[68,69]Bronchial asthma, second-third degree atrioventricular block, sick sinus syndrome, severe bradycardia, patients with severe cardiogenic shock and heart failure who use inotropic drugs and hepatic impairement[17-20]Frequent: edema, dizziness, bradycardia, hypotension, nausea, diarrhea and blurred vision Rare: deterioration of renal and hepatic function[17-20]
RDNAblation of afferent and efferent renal nerves[51-55]Treatment of resistant hypertension[56,57]An improvement in insulin sensitivity by reduction in sympathetic nerve activity[56,57]Polar or accessory arteries, renal artery stenosis, prior renal revascularization and glomerular filtration rate < 45 mL/min per 1.73 m2[56,57,62]Renal artery dissection, postprocedural hypotension, femoral artery pseudoaneuryn, intraprocedural bradycardia[56,57]