Copyright
©The Author(s) 2025.
World J Diabetes. Aug 15, 2025; 16(8): 108310
Published online Aug 15, 2025. doi: 10.4239/wjd.v16.i8.108310
Published online Aug 15, 2025. doi: 10.4239/wjd.v16.i8.108310
Table 1 Comparative analysis between Yang et al’s study[3] and the prior studies in the field of Ras homolog enriched in brain 1 binds
Aspect | Yang et al’s study[3] | Prior studies | Implications | Ref. |
Rheb1 & β-cell proliferation | Dual regulation via mTORC1 and AMPK (Figure 4 in the study of Yang et al[3]) | mTORC1 alone drives β-cell growth | Reveals AMPK as a critical co-regulator | [16] |
β-cell identity | NOTCH1 activation prevents dedifferentiation (Figure 5 in the study of Yang et al[3]) | mTORC1 maintains identity | Suggests NOTCH1 as a new therapeutic axis | [5] |
HNF4α interaction | Rheb1 binds and upregulates HNF4α (Figure 6 in the study of Yang et al[3]) | HNF4α mutations cause MODY1 | Links Rheb1 to genetic diabetes mechanisms | [13] |
Age-dependent Rheb1 | Higher in young human islets (Figure 1A in the study of Yang et al[3]) | β-cell replication declines with age | Supports rejuvenation strategies targeting Rheb1 | [8] |
- Citation: Gouda MM. Rheb1 as a novel β-cell regulator connecting mTORC1, AMPK, and NOTCH1 pathways for efficient diabetes therapy. World J Diabetes 2025; 16(8): 108310
- URL: https://www.wjgnet.com/1948-9358/full/v16/i8/108310.htm
- DOI: https://dx.doi.org/10.4239/wjd.v16.i8.108310