Editorial
Copyright ©The Author(s) 2025.
World J Diabetes. Aug 15, 2025; 16(8): 108310
Published online Aug 15, 2025. doi: 10.4239/wjd.v16.i8.108310
Table 1 Comparative analysis between Yang et al’s study[3] and the prior studies in the field of Ras homolog enriched in brain 1 binds
Aspect
Yang et al’s study[3]
Prior studies
Implications
Ref.
Rheb1 & β-cell proliferationDual regulation via mTORC1 and AMPK (Figure 4 in the study of Yang et al[3])mTORC1 alone drives β-cell growthReveals AMPK as a critical co-regulator[16]
β-cell identityNOTCH1 activation prevents dedifferentiation (Figure 5 in the study of Yang et al[3])mTORC1 maintains identitySuggests NOTCH1 as a new therapeutic axis[5]
HNF4α interactionRheb1 binds and upregulates HNF4α (Figure 6 in the study of Yang et al[3])HNF4α mutations cause MODY1Links Rheb1 to genetic diabetes mechanisms[13]
Age-dependent Rheb1Higher in young human islets (Figure 1A in the study of Yang et al[3])β-cell replication declines with ageSupports rejuvenation strategies targeting Rheb1[8]