Review
Copyright ©The Author(s) 2021.
World J Diabetes. Dec 15, 2021; 12(12): 1979-1999
Published online Dec 15, 2021. doi: 10.4239/wjd.v12.i12.1979
Table 1 Summary of studies on modulation of thioredoxin interacting protein using natural antioxidants animal models
Ref.
Treatment
Animal model
Main findings
[1]Taohong Siwu decoction 18, 9 and 4.5mg/kg Rat with middle cerebral artery occlusionImproved neubehavioral function and inflammation and inhibited pyroptosis following ischemic stroke
Intragastric administration for 7 d
[2]Z-Guggulsterone, 12.5, 25, 50 mg/kg, (ip)Rat with middle cerebral artery occlusionZ-Guggulsterone improved neurological deficit and, modulated redox imbalance and inflammation through inhibition of TXNIP/NLRP3 signaling
Intraperitoneal administration for 6 d
[11]Curcumin 50 mg/kg, Rat with cerebral artery occlusionAttenuated ischemic brain injury. Modulation of TXNIP/NLRP3 inflammasome activation by suppression of ER stress.
One hour before surgery, (ip)
[70] [69]CurcuminHFD/ High sugar dietPrevented fatty liver via inhibition of TXNIP
[66]QurecetindiabetesPrevented inflammation, liver TXNIP, lipid accumulation
[6]Ketogenic dietMouse model of middle cerebral artery occlusionKetogenic diet improved ischemic tolerance, Attenuated ER stress and TXNIP/NLRP3 activation
3 wk
[7]Umbelliferone, 15and 30 mg /kgRat with middle cerebral artery occlusionProtected against cerebral ischemia reperfusion injury by suppressing TXNIP/NLRP3 inflammasome activation
Pretreatment for 7 d (ip)
[8]Ruscogenin, 10 mg/kg One hour before surgery, (Intra gastic admin.Mice with middle cerebral artery occlusion Decreased brain infarction, edema, improved neurological outcome by suppressing a TXNIP/NLRP3 inflammasome activation and MAPK pathway
[9]Resveratrol, 5 mg/KgWT mice with embolic middle cerebral artery occlusionProtected from ischemic injury, improved neurological score suppressed TXNIP/NLRP3 inflammasome and apoptosis
3 h post-embolic occlusion. (iv)
[21]Salvianolic acidHFD- RatsPrevented HFD-induced NAFLD
[65]SalidrosidePrevented HFD-induced NAFLD
[12]Compound 10b, 3 mg/kgRat with middle cerebral artery occlusion Attenuated cerebral ischemia by upregulating endogenous antioxidant system and down regulation of oxidative stress.
At the onset of reperfusion
Table 2 Summary of studies on modulation of thioredoxin interacting protein expression using drug repurposing in animal models
Ref.
Treatment

Animal model
Main findings
[84]Verapamil (0.15 mg/kg), intra venous1 hHyperglycemic mouse model middle cerebral artery occlusionReduced infarct area, hemorrhagic transformation and blood brain barrier damage. Improved stroke outcome and neuro inflammation in response to hyperglycemic stroke
[7]Verapamil po1 hNMDA- optic neuropathyImproved retinal neurodegeneration by altering antioxidant status and disrupting the Trx-ASK-1 inhibitory complex
[67]Verapamil, 25 mg/kg/d, IP1 wkhigh-fat diet-induced obesity- 10 wkImproved hepatic inflammation, metabolic homeostasis in NAFLD via TXNIP-NLRP3 inflammasome activation
[104]VerapamilHigh-fat diet-prediabetic neuropathyimproved prediabetic neuropathy, inflammation via inhibition of TXNIP and NLRP3-inflammasome activation
[10], [105]Verapamil, 100 mg/kgPo dailySTZ- and HFD-obesity modelInhibit TXNIP expression and restore beta-cell function, improve glucose level in STZ- and HFD-obesity model
[100]MetforminSTZ-diabetes mouseSuppressed TXNIP/NLRP3 inflammasome activation, reduced cell apoptosis in adipose tissue
[99]MetforminApoE-/- + STZ miceInhibited TXNIP/NLRP3 inflammasome activation, and suppressed diabetes-accelerated atherosclerosis in apoE-/- mice
[101]Ezetimibe (250 µg, 500 µg, 1 mg)1 hIntra-nasalRat model middle cerebral artery occlusionImproved infarct volume, neurological outcome Increased activation of AMPK, modulated oxidative stress, microglial activation and TXNIP/NLRP3 activation
[103]SRI-37330Po dailySTZ-mouse model and obesity-induced (db/db) diabetesInhibited glucagon secretion and function, reduced hepatic glucose production, and reversed hepatic steatosis
[105]W2476, 200 mg/kgPo dailySTZ- and HFD-obesity modelInhibit TXNIP expression and restore beta-cell function, improve glucose level in STZ- and HFD-obesity model
[34]GW0742 (25 μg/kg; intranasal)1 h/ 24 hRat pups with hypoxic ischemiaGW0742 significantly reduced the activation of TXNIP/NLRP3 inflammasome, pro-inflammatory microglia
Table 3 Summary of the in vivo studies
Ref.
Duration of Studies            
Insult
TXNIP
NLRP3
CASP-1       
IL-1β       
TNF-a       
NFKB       
Casp-3       
NY
Other markers
Mohamed et al[2], 2015Rat retina, 10 wkHFD++++++++Acellular capillaries
Coucha et al[11], 2017Mouse retina, 8 wkHFD+ mRNAER-stress, miR17-5p
Mohamed et al[41], 2020Mouse retina, 8 wkHFD+--+Leukostasis, acellular capillaries
Mohamed et al[58], 2018Mouse liver, 8 wkHFD++++Trend+TLR2 signal +, fibrosis
Elshaer et al[40], 2017Mouse sk. Muscle, 8 wkHFD+-+++Systemic IL-1b, vascular recovery
Coucha et al[33], 2019Mouse-retina, 1-3 d, 14 dI/R+ protein + mRNA++++Acellular capillary, visual acuity
El-Azab et al[19], 2014Mouse-retina, 1-dNMDA+++++Acellular capillary, neurodegeneration, ERG
Al-Gayyar et al[7], 2011Rat-retina, 1-dNMDA++++++Neurodegeneration
Ishrat et al[80],2015Mouse; BrainEmbolicstroke+++++++Neurological function, cerebral blood flow
Ismael et al[94], 2021Mouse brain, 24 hStroke+ HG+=++++ trendHemorrhagic transformation
Wang et al[24], 2020Rat brain, 7-dStroke+++++Pyroptosis, inflammation
Liu et al[97], 2020Rat brain, 7 dStroke+ mRNA + protein+-++Neurological deficit, inflamm
Gamdzyk et al[34], 2020Rat pups brain, 24 hHyp-oxia++++Microglial activation, TXNIP
Ding et al[21], 2016Rat brain, 14 dThrombosis+++++ER- stress neural pyroptosis
Yin et al[29], 2021Rat brain, 72 hStroke++++Microglial activation, ROS
Tian et al[81], 2012Rat brain, 24 hStroke+MAPK activation and Nrf2
Guo et al[3], 2018Mice, 72 hStroke+++ active+Elevated ER stress, neurodegeneration
Hou et al[102], 2018Rat brain, 24 hStroke+++Nrf2 and NLRP3 through TXNIP
Cao et al[43], 2016Mice brain, 24 hStroke+++Neuro. deficit, BBB damage
Guo et al[3], 2016Rat brain, 24 hHG + stroke++++Hemorrhagic transformation
Hua et al[83], 2015Rat brain, 24 hStroke+++Neurological deficit
Wang et al[98], 2015Rat brain Stroke++++PPARγ, negative regulator of TXNIP
Li et al[20], 2015Rat brain, 24 h Stroke++++ER stress mediates TXNIP activation
Table 4 Summary of the in vitro Studies
Ref.
Cell type
Insult
TXNIP
NLRP3
CASP-1
IL-1β
TNF-a
NFKB
Casp-3
Other markers
Mohamed et al[2], 2015ECPalmitate+++++IL1-b in cell lysate and CM Adhesion Molecules
Mohamed et al[41], 2020ECTXNIP+++trend++Adhesion Molecules
Coucha et al[11], 2017MullerPalmitate+ protein + mRNAtrendtrend+IL1-b in cell lysate
Coucha et al[33], 2019MullerHypoxia+ mRNAtrend++IL-1b in cell lysate
El-Azab et al[19], 2014NMDA+++++IL1-b in CM
Gamdzyk et al[34], 2020P12 cellsOGD+++Cell death, miR-17-5p
Tian et al[81], 2012Primary rat cortical neuronOGD+Oxidative stress and activation of MAPK
Liu et al[97], 2020Primary rat neuronsOGD++++TXNIP NLRP3
Guo et al[3], 2018SH-SY-5Y cellsOGD++ activity+Activation of ER stress
Cao et al[43], 2016bEnd.3OGD+++MAPK activation, EC-damage