Review
Copyright
©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Dec 15, 2021; 12(12): 1979-1999
Published online Dec 15, 2021. doi: 10.4239/wjd.v12.i12.1979
Table 1 Summary of studies on modulation of thioredoxin interacting protein using natural antioxidants animal models
Ref. Treatment Animal model Main findings [1 ] Taohong Siwu decoction 18, 9 and 4.5mg/kg Rat with middle cerebral artery occlusion Improved neubehavioral function and inflammation and inhibited pyroptosis following ischemic stroke Intragastric administration for 7 d [2 ] Z-Guggulsterone, 12.5, 25, 50 mg/kg, (ip ) Rat with middle cerebral artery occlusion Z-Guggulsterone improved neurological deficit and, modulated redox imbalance and inflammation through inhibition of TXNIP/NLRP3 signaling Intraperitoneal administration for 6 d [11 ] Curcumin 50 mg/kg, Rat with cerebral artery occlusion Attenuated ischemic brain injury. Modulation of TXNIP/NLRP3 inflammasome activation by suppression of ER stress. One hour before surgery, (ip ) [70 ] [69 ] Curcumin HFD/ High sugar diet Prevented fatty liver via inhibition of TXNIP [66 ] Qurecetin diabetes Prevented inflammation, liver TXNIP, lipid accumulation [6 ] Ketogenic diet Mouse model of middle cerebral artery occlusion Ketogenic diet improved ischemic tolerance, Attenuated ER stress and TXNIP/NLRP3 activation 3 wk [7 ] Umbelliferone, 15and 30 mg /kg Rat with middle cerebral artery occlusion Protected against cerebral ischemia reperfusion injury by suppressing TXNIP/NLRP3 inflammasome activation Pretreatment for 7 d (ip ) [8 ] Ruscogenin, 10 mg/kg One hour before surgery, (Intra gastic admin. Mice with middle cerebral artery occlusion Decreased brain infarction, edema, improved neurological outcome by suppressing a TXNIP/NLRP3 inflammasome activation and MAPK pathway [9 ] Resveratrol, 5 mg/Kg WT mice with embolic middle cerebral artery occlusion Protected from ischemic injury, improved neurological score suppressed TXNIP/NLRP3 inflammasome and apoptosis 3 h post-embolic occlusion. (iv ) [21 ] Salvianolic acid HFD- Rats Prevented HFD-induced NAFLD [65 ] Salidroside Prevented HFD-induced NAFLD [12 ] Compound 10b, 3 mg/kg Rat with middle cerebral artery occlusion Attenuated cerebral ischemia by upregulating endogenous antioxidant system and down regulation of oxidative stress. At the onset of reperfusion
Table 2 Summary of studies on modulation of thioredoxin interacting protein expression using drug repurposing in animal models
Ref. Treatment Animal model Main findings [84 ] Verapamil (0.15 mg/kg), intra venous 1 h Hyperglycemic mouse model middle cerebral artery occlusion Reduced infarct area, hemorrhagic transformation and blood brain barrier damage. Improved stroke outcome and neuro inflammation in response to hyperglycemic stroke [7 ] Verapamil po 1 h NMDA- optic neuropathy Improved retinal neurodegeneration by altering antioxidant status and disrupting the Trx-ASK-1 inhibitory complex [67 ] Verapamil, 25 mg/kg/d, IP 1 wk high-fat diet-induced obesity- 10 wk Improved hepatic inflammation, metabolic homeostasis in NAFLD via TXNIP-NLRP3 inflammasome activation [104 ] Verapamil High-fat diet-prediabetic neuropathy improved prediabetic neuropathy, inflammation via inhibition of TXNIP and NLRP3-inflammasome activation [10 ], [105 ] Verapamil, 100 mg/kg Po daily STZ- and HFD-obesity model Inhibit TXNIP expression and restore beta-cell function, improve glucose level in STZ- and HFD-obesity model [100 ] Metformin STZ-diabetes mouse Suppressed TXNIP/NLRP3 inflammasome activation, reduced cell apoptosis in adipose tissue [99 ] Metformin ApoE-/- + STZ mice Inhibited TXNIP/NLRP3 inflammasome activation, and suppressed diabetes-accelerated atherosclerosis in apoE-/- mice [101 ] Ezetimibe (250 µg, 500 µg, 1 mg) 1 hIntra-nasal Rat model middle cerebral artery occlusion Improved infarct volume, neurological outcome Increased activation of AMPK, modulated oxidative stress, microglial activation and TXNIP/NLRP3 activation [103 ] SRI-37330 Po daily STZ-mouse model and obesity-induced (db/db) diabetes Inhibited glucagon secretion and function, reduced hepatic glucose production, and reversed hepatic steatosis [105 ] W2476, 200 mg/kg Po daily STZ- and HFD-obesity model Inhibit TXNIP expression and restore beta-cell function, improve glucose level in STZ- and HFD-obesity model [34 ] GW0742 (25 μg/kg; intranasal) 1 h/ 24 h Rat pups with hypoxic ischemia GW0742 significantly reduced the activation of TXNIP/NLRP3 inflammasome, pro-inflammatory microglia
Table 3 Summary of the in vivo studies
Ref. Duration of Studies Insult TXNIP NLRP3 CASP-1 IL-1β TNF-a NFKB Casp-3 NY Other markers Mohamed et al [2 ], 2015 Rat retina, 10 wk HFD + + + + + + + + Acellular capillaries Coucha et al [11 ], 2017 Mouse retina, 8 wk HFD + mRNA ER-stress, miR17-5p Mohamed et al [41 ], 2020 Mouse retina, 8 wk HFD + - - + Leukostasis, acellular capillaries Mohamed et al [58 ], 2018 Mouse liver, 8 wk HFD + + + + Trend + TLR2 signal +, fibrosis Elshaer et al [40 ], 2017 Mouse sk. Muscle, 8 wk HFD + - + + + Systemic IL-1b, vascular recovery Coucha et al [33 ], 2019 Mouse-retina, 1-3 d, 14 d I/R + protein + mRNA + + + + Acellular capillary, visual acuity El-Azab et al [19 ], 2014 Mouse-retina, 1-d NMDA + + + + + Acellular capillary, neurode generation, ERG Al-Gayyar et al [7 ], 2011 Rat-retina, 1-d NMDA + + + + + + Neurode generation Ishrat et al [80 ],2015 Mouse; Brain Embolic stroke + + + + + + + Neurological function, cerebral blood flow Ismael et al [94 ], 2021 Mouse brain, 24 h Stroke+ HG + = + + + + trend Hemorrhagic transformation Wang et al [24 ], 2020 Rat brain, 7-d Stroke + + + + + Pyroptosis, inflammation Liu et al [97 ], 2020 Rat brain, 7 d Stroke + mRNA + protein + - + + Neurological deficit, inflamm Gamdzyk et al [34 ], 2020 Rat pups brain, 24 h Hyp-oxia + + + + Microglial activation, TXNIP Ding et al [21 ], 2016 Rat brain, 14 d Throm bosis + + + + + ER- stress neural pyroptosis Yin et al [29 ], 2021 Rat brain, 72 h Stroke + + + + Microglial activation, ROS Tian et al [81 ], 2012 Rat brain, 24 h Stroke + MAPK activa tion and Nrf2 Guo et al [3 ], 2018 Mice, 72 h Stroke + + + active + Elevated ER stress, neurode generation Hou et al [102 ], 2018 Rat brain, 24 h Stroke + + + Nrf2 and NL RP3 through TXNIP Cao et al [43 ], 2016 Mice brain, 24 h Stroke + + + Neuro. deficit, BBB damage Guo et al [3 ], 2016 Rat brain, 24 h HG + stroke + + + + Hemorrhagic transformation Hua et al [83 ], 2015 Rat brain, 24 h Stroke + + + Neurological deficit Wang et al [98 ], 2015 Rat brain Stroke + + + + PPARγ, nega tive regulator of TXNIP Li et al [20 ], 2015 Rat brain, 24 h Stroke + + + + ER stress me diates TXNIP activation
Table 4 Summary of the in vitro Studies
Ref. Cell type Insult TXNIP NLRP3 CASP-1 IL-1β TNF-a NFKB Casp-3 Other markers Mohamed et al [2 ], 2015 EC Palmitate + + + + + IL1-b in cell lysate and CM Adhesion Molecules Mohamed et al [41 ], 2020 EC TXNIP++ + trend + + Adhesion Molecules Coucha et al [11 ], 2017 Muller Palmitate + protein + mRNA trend trend + IL1-b in cell lysate Coucha et al [33 ], 2019 Muller Hypoxia + mRNA trend + + IL-1b in cell lysate El-Azab et al [19 ], 2014 NMDA + + + + + IL1-b in CM Gamdzyk et al [34 ], 2020 P12 cells OGD + + + Cell death, miR-17-5p Tian et al [81 ], 2012 Primary rat cortical neuron OGD + Oxidative stress and activation of MAPK Liu et al [97 ], 2020 Primary rat neurons OGD + + + + TXNIP NLRP3 Guo et al [3 ], 2018 SH-SY-5Y cells OGD + + activity + Activation of ER stress Cao et al [43 ], 2016 bEnd.3 OGD + + + MAPK activation, EC-damage