Copyright
©The Author(s) 2023.
World J Diabetes. Sep 15, 2023; 14(9): 1341-1348
Published online Sep 15, 2023. doi: 10.4239/wjd.v14.i9.1341
Published online Sep 15, 2023. doi: 10.4239/wjd.v14.i9.1341
Figure 1 Main types of bariatric surgery, from left to right.
A: Sleeve gastrectomy; B: Roux-en-Y gastric bypass; C: One-anastomosis gastric bypass. Citation: IFSO. Sleeve Gastrectomy. [cited 20 December 2022]. Available from: https://www.ifso.com/sleeve-gastrectomy/[19]; IFSO. Roux-en-Y Gastric Bypass. [cited 20 December 2022]. Available from: https://www.ifso.com/roux-en-y-gastric-bypass/[20]; IFSO. One Anastomosis Gastric Bypass. [cited 20 December 2022]. Available from: https://www.ifso.com/alternative-intestinal-procedures/[21]. Copyright© Dr. Levent Efe, courtesy of IFSO, 2022.
Figure 2 Forms of biliopancreatic diversions, from left to right.
A: Biliopancreatic diversion (BPD); B: BPD with duodenal switch. Citation: IFSO. Biliopancreatic Diversion (BPD). [cited 20 December 2022]. Available from: https://www.ifso.com/bilio-pancreatic-diversion/[25]; IFSO. Biliopancreatic Diversion with Duodenal Switch. [cited 20 December 2022]. Available from: https://www.ifso.com/bilio-pancreatic-diversion-with-duodenal-switch/[26]. Copyright© Dr. Levent Efe, courtesy of IFSO, 2022.
Figure 3 A schematic view of acini-islet-acinar- and alpha-amylase-dependent inhibitory pathway involved in the regulation of glucose metabolism before and after Biliopancreatic diversion surgery.
A: Before biliopancreatic diversion surgery; B: After biliopancreatic diversion surgery. Incretin-dependent, quick stimulatory pathways (black) and acini-islet-acinar–dependent intrapancreatic inhibitory pathway and downregulating alpha-amylase dependent pathways, originating in the duodenum, of insulin secretion (orange and green respectively). AIA: Acini-islet-acinar.
- Citation: Pierzynowski SG, Stier C, Pierzynowska K. Hypothesis that alpha-amylase evokes regulatory mechanisms originating in the pancreas, gut and circulation, which govern glucose/insulin homeostasis. World J Diabetes 2023; 14(9): 1341-1348
- URL: https://www.wjgnet.com/1948-9358/full/v14/i9/1341.htm
- DOI: https://dx.doi.org/10.4239/wjd.v14.i9.1341