For: | Sugiyama T. Role of P2X7 receptors in the development of diabetic retinopathy. World J Diabetes 2014; 5(2): 141-145 [PMID: 24748927 DOI: 10.4239/wjd.v5.i2.141] |
---|---|
URL: | https://www.wjgnet.com/1948-9358/full/v5/i2/141.htm |
Number | Citing Articles |
1 |
Geoffrey Burnstock. The therapeutic potential of purinergic signalling. Biochemical Pharmacology 2018; 151: 157 doi: 10.1016/j.bcp.2017.07.016
|
2 |
Irene Martínez-Alberquilla, Xavier Gasull, Patricia Pérez-Luna, Rubén Seco-Mera, Javier Ruiz-Alcocer, Almudena Crooke. Neutrophils and neutrophil extracellular trap components: Emerging biomarkers and therapeutic targets for age-related eye diseases. Ageing Research Reviews 2022; 74: 101553 doi: 10.1016/j.arr.2021.101553
|
3 |
Shriram Venkataramana, S. Lourenssen, K.G. Miller, M.G. Blennerhassett. Early inflammatory damage to intestinal neurons occurs via inducible nitric oxide synthase. Neurobiology of Disease 2015; 75: 40 doi: 10.1016/j.nbd.2014.12.014
|
4 |
Davide Ferrari, Nicoletta Bianchi, Holger K. Eltzschig, Roberto Gambari. MicroRNAs Modulate the Purinergic Signaling Network. Trends in Molecular Medicine 2016; 22(10): 905 doi: 10.1016/j.molmed.2016.08.006
|
5 |
Robson Xavier Faria, Noemi de Jesus Hiller, Juliana Pimenta Salles, Jackson Antonio Lamounier Camargos Resende, Roberta Tosta Diogo, Natalia Lidmar von Ranke, Murilo Lamim Bello, Carlos Rangel Rodrigues, Helena Carla Castro, Daniela de Luna Martins. Arylboronic acids inhibit P2X7 receptor function and the acute inflammatory response. Journal of Bioenergetics and Biomembranes 2019; 51(4): 277 doi: 10.1007/s10863-019-09802-x
|
6 |
Anna Solini, Ivana Novak. Role of the P2X7 receptor in the pathogenesis of type 2 diabetes and its microvascular complications. Current Opinion in Pharmacology 2019; 47: 75 doi: 10.1016/j.coph.2019.02.009
|
7 |
Marcelıno MONTİEL-HERRERA, Denisse GARCÍA-VİLLA, Guillermo LÓPEZ-CERVANTES, Daniel REYES-HARO, J. Abraham DOMÍNGUEZ-AVİLA, Gustavo A. GONZÁLEZ-AGUİLAR. The role of ion channels on the physiology of the neurovascular unit and the regulation of cerebral blood flow. Journal of Cellular Neuroscience and Oxidative Stress 2022; 13(2): 1004 doi: 10.37212/jcnos.1054986
|
8 |
Kenneth A. Jacobson, Mortimer M. Civan. Ocular Purine Receptors as Drug Targets in the Eye. Journal of Ocular Pharmacology and Therapeutics 2016; 32(8): 534 doi: 10.1089/jop.2016.0090
|
9 |
Francesco Calzaferri, Cristina Ruiz‐Ruiz, Antonio M. G. de Diego, Ricardo de Pascual, Iago Méndez‐López, María F. Cano‐Abad, Victoria Maneu, Cristóbal de los Ríos, Luis Gandía, Antonio G. García. The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases. Medicinal Research Reviews 2020; 40(6): 2427 doi: 10.1002/med.21710
|
10 |
Carlos Subauste. CD40, a Novel Inducer of Purinergic Signaling: Implications to the Pathogenesis of Experimental Diabetic Retinopathy. Vision 2017; 1(3): 20 doi: 10.3390/vision1030020
|
11 |
Claudia Giuseppina Fresta, Giuseppe Caruso, Annamaria Fidilio, Chiara Bianca Maria Platania, Nicolò Musso, Filippo Caraci, Filippo Drago, Claudio Bucolo. Dihydrotanshinone, a Natural Diterpenoid, Preserves Blood-Retinal Barrier Integrity via P2X7 Receptor. International Journal of Molecular Sciences 2020; 21(23): 9305 doi: 10.3390/ijms21239305
|
12 |
Hong Xu, Chaopeng Xiong, Luling He, Bing Wu, Lulu Peng, Yajun Cheng, Fuqing Jiang, Liping Tan, Lan Tang, Yunming Tu, Yuping Yang, Changle Liu, Yun Gao, Guilin Li, Chunping Zhang, Shuangmei Liu, Changshui Xu, Hong Wu, Guodong Li, Shangdong Liang. Trans-Resveratrol Attenuates High Fatty Acid-Induced P2X7 Receptor Expression and IL-6 Release in PC12 Cells: Possible Role of P38 MAPK Pathway. Inflammation 2015; 38(1): 327 doi: 10.1007/s10753-014-0036-6
|
13 |
Zhe Chen, Lu He, Lanfang Li, Linxi Chen. The P2X7 purinergic receptor: An emerging therapeutic target in cardiovascular diseases. Clinica Chimica Acta 2018; 479: 196 doi: 10.1016/j.cca.2018.01.032
|
14 |
Yangjiani Li, William Mitchell, Tobias Elze, Nazlee Zebardast. Association Between Diabetes, Diabetic Retinopathy, and Glaucoma. Current Diabetes Reports 2021; 21(10) doi: 10.1007/s11892-021-01404-5
|
15 |
Natalia Martínez-Gil, Oksana Kutsyr, Agustina Noailles, Laura Fernández-Sánchez, Lorena Vidal, Xavier Sánchez-Sáez, Carla Sánchez-Castillo, Pedro Lax, Nicolás Cuenca, Antonio G. García, Victoria Maneu. Purinergic Receptors P2X7 and P2X4 as Markers of Disease Progression in the rd10 Mouse Model of Inherited Retinal Dystrophy. International Journal of Molecular Sciences 2022; 23(23): 14758 doi: 10.3390/ijms232314758
|
16 |
Andreas Reichenbach, Andreas Bringmann. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2016; 104: 194 doi: 10.1016/j.neuropharm.2015.05.005
|
17 |
Yu. V. Markitantova, V. N. Simirskii. The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina. Russian Journal of Developmental Biology 2021; 52(6): 430 doi: 10.1134/S1062360421060084
|
18 |
Odunayo O. Mugisho, Colin R. Green. The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics. Experimental Eye Research 2022; 215: 108911 doi: 10.1016/j.exer.2021.108911
|
19 |
Victoria Maneu, Pedro Lax, Antonio Miguel G. De Diego, Nicolás Cuenca, Antonio G. García. Combined drug triads for synergic neuroprotection in retinal degeneration. Biomedicine & Pharmacotherapy 2022; 149: 112911 doi: 10.1016/j.biopha.2022.112911
|
20 |
PETIA KUPENOVA, ELKA POPOVA, LILIYA VITANOVA. Purinergic modulation of frog electroretinographic responses: The role of the ionotropic receptor P2X7. Visual Neuroscience 2017; 34 doi: 10.1017/S0952523817000128
|
21 |
Quan Zhang, Xianchun Yan, Hua Han, Yusheng Wang, Jiaxing Sun. Pericyte in retinal vascular diseases: A multifunctional regulator and potential therapeutic target. The FASEB Journal 2024; 38(10) doi: 10.1096/fj.202302624R
|
22 |
Carlos Antonio García‐Carlos, Julio Andrés Camargo‐Loaiza, Denisse García‐Villa, José Guillermo López‐Cervantes, J. Abraham Domínguez‐Avila, Gustavo A. González‐Aguilar, Humberto Astiazaran‐Garcia, Marcelino Montiel‐Herrera. Angiotensin II, ATP and high extracellular potassium induced intracellular calcium responses in primary rat brain endothelial cell cultures. Cell Biochemistry and Function 2021; 39(5): 688 doi: 10.1002/cbf.3635
|
23 |
Caterina Claudia Lepre, Marina Russo, Maria Consiglia Trotta, Francesco Petrillo, Fabiana Anna D’Agostino, Gennaro Gaudino, Giovanbattista D’Amico, Maria Rosaria Campitiello, Erminia Crisci, Maddalena Nicoletti, Carlo Gesualdo, Francesca Simonelli, Michele D’Amico, Anca Hermenean, Settimio Rossi. Inhibition of Galectins and the P2X7 Purinergic Receptor as a Therapeutic Approach in the Neurovascular Inflammation of Diabetic Retinopathy. International Journal of Molecular Sciences 2023; 24(11): 9721 doi: 10.3390/ijms24119721
|
24 |
Rui Zhou, Xitong Dang, Randy S. Sprague, S. Jamal Mustafa, Zhichao Zhou. Alteration of purinergic signaling in diabetes: Focus on vascular function. Journal of Molecular and Cellular Cardiology 2020; 140: 1 doi: 10.1016/j.yjmcc.2020.02.004
|
25 |
Ping Hu, Jeffrey S. Thinschmidt, Sergio Caballero, Samuel Adamson, Louise Cole, Tailoi Chan-Ling, Maria B. Grant. Loss of survival factors and activation of inflammatory cascades in brain sympathetic centers in type 1 diabetic mice. American Journal of Physiology-Endocrinology and Metabolism 2015; 308(8): E688 doi: 10.1152/ajpendo.00504.2014
|
26 |
Xue Cai, James F. McGinnis. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives. Journal of Diabetes Research 2016; 2016: 1 doi: 10.1155/2016/3789217
|
27 |
J.C.C. Arruda, N.C. Rocha, E.G. Santos, L.G.B. Ferreira, M.L. Bello, C. Penido, T.E.M.M. Costa, J.A.A. Santos, I.M. Ribeiro, T.C.B. Tomassini, R.X. Faria. Physalin pool from Physalis angulata L. leaves and physalin D inhibit P2X7 receptor function in vitro and acute lung injury in vivo. Biomedicine & Pharmacotherapy 2021; 142: 112006 doi: 10.1016/j.biopha.2021.112006
|