For: | Shafrir E. Contribution of animal models to the research of the causes of diabetes. World J Diabetes 2010; 1(5): 137-140 [PMID: 21537440 DOI: 10.4239/wjd.v1.i5.137] |
---|---|
URL: | https://www.wjgnet.com/1948-9358/full/v1/i5/137.htm |
Number | Citing Articles |
1 |
Erik A. Taylor, Eve Donnelly. Encyclopedia of Bone Biology. 2020; : 456 doi: 10.1016/B978-0-12-801238-3.11222-X
|
2 |
Søs Skovsø. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation 2014; 5(4): 349 doi: 10.1111/jdi.12235
|
3 |
Talita Z. Choudhury, Uddalak Majumdar, Madhumita Basu, Vidu Garg. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. genesis 2021; 59(11) doi: 10.1002/dvg.23449
|
4 |
Renjitha Gopurappilly, Ramesh Bhonde. Can multiple intramuscular injections of mesenchymal stromal cells overcome insulin resistance offering an alternative mode of cell therapy for type 2 diabetes?. Medical Hypotheses 2012; 78(3): 393 doi: 10.1016/j.mehy.2011.11.021
|
5 |
Sally A. Selim, Assmaa O. Selim. Effect of streptozotocin-induced diabetes mellitus on the cerebellar cortex of adult male albino rats. The Egyptian Journal of Histology 2013; 36(1): 103 doi: 10.1097/01.EHX.0000424090.98199.b8
|
6 |
Verônyca Gonçalves Paula, Yuri Karen Sinzato, Rafaianne Queiroz de Moraes-Souza, Thaigra Sousa Soares, Franciane Quintanilha Gallego Souza, Barshana Karki, Antonio Marcus de Andrade Paes, José Eduardo Corrente, Débora Cristina Damasceno, Gustavo Tadeu Volpato. Metabolic changes in female rats exposed to intrauterine hyperglycemia and postweaning consumption of high-fat diet. Biology of Reproduction 2022; 106(1): 200 doi: 10.1093/biolre/ioab195
|
7 |
Luciana Lassance, Maricela Haghiac, Patrick Leahy, Subhabrata Basu, Judi Minium, Joanna Zhou, Mitchell Reider, Patrick M. Catalano, Sylvie Hauguel-de Mouzon. Identification of early transcriptome signatures in placenta exposed to insulin and obesity. American Journal of Obstetrics and Gynecology 2015; 212(5): 647.e1 doi: 10.1016/j.ajog.2015.02.026
|
8 |
Parag Garhyan, Brian Gregory Topp, Jenny Y. Chien, Vikram P. Sinha, Meindert Danhof, Stephan Schmidt. Applied Pharmacometrics. AAPS Advances in the Pharmaceutical Sciences Series 2014; 14: 139 doi: 10.1007/978-1-4939-1304-6_5
|
9 |
Ivan Merdzo, Ibolya Rutkai, Venkata N. L. R. Sure, Prasad V. G. Katakam, David W. Busija. Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. American Journal of Physiology-Heart and Circulatory Physiology 2019; 317(5): H1086 doi: 10.1152/ajpheart.00341.2019
|
10 |
Liz Maria Queiroz Machado, Daniel Silveira Serra, Thayanne Gomes Neves, Francisco Sales Ávila Cavalcante, Vânia Marilande Ceccatto, Jose Henrique Leal‐Cardoso, Walter Araujo Zin, Maria Diana Moreira‐Gomes. Pulmonary impairment in type 2 diabetic rats and its improvement by exercise. Acta Physiologica 2022; 234(1) doi: 10.1111/apha.13708
|
11 |
Rubén Marín-Juez, Susanne Jong-Raadsen, Shuxin Yang, Herman P Spaink. Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. Journal of Endocrinology 2014; 222(2): 229 doi: 10.1530/JOE-14-0178
|
12 |
Angela-Maria Meyer zum Gottesberge, Thomas Massing, Anja Sasse, Silvia Palma, Stefan Hansen. Zucker diabetic fatty rats, a model for type 2 diabetes, develop an inner ear dysfunction that can be attenuated by losartan treatment. Cell and Tissue Research 2015; 362(2): 307 doi: 10.1007/s00441-015-2215-7
|
13 |
Youn Hee Nam, Isabel Rodriguez, Sung Woo Shin, Ji Heon Shim, Na Woo Kim, Min Cheol Kim, Seo Yule Jeong, Wanlapa Nuankaew, Bin Na Hong, Hyunggun Kim, Tong Ho Kang. Characteristics of the New Insulin-Resistant Zebrafish Model. Pharmaceuticals 2021; 14(7): 642 doi: 10.3390/ph14070642
|
14 |
Sarawut Lapmanee, Narattaphol Charoenphandhu, Ratchaneevan Aeimlapa, Panan Suntornsaratoon, Kannikar Wongdee, Wacharaporn Tiyasatkulkovit, Kanchana Kengkoom, Khuanjit Chaimongkolnukul, Dutmanee Seriwatanachai, Nateetip Krishnamra. High Dietary Cholesterol Masks Type 2 Diabetes‐Induced Osteopenia and Changes in Bone Microstructure in Rats. Lipids 2014; 49(10): 975 doi: 10.1007/s11745-014-3950-3
|
15 |
Xiaohong Li, Jing Lu, Ying Wang, Xueyun Huo, Zhenkun Li, Shuangyue Zhang, Changlong Li, Meng Guo, Xiaoyan Du, Zhenwen Chen, Michael Bader. Establishment and Characterization of a Newly Established Diabetic Gerbil Line. PLOS ONE 2016; 11(7): e0159420 doi: 10.1371/journal.pone.0159420
|
16 |
Sachin L. Badole, Ganesh B. Jangam. Glucose Intake and Utilization in Pre-Diabetes and Diabetes. 2015; : 181 doi: 10.1016/B978-0-12-800093-9.00014-4
|
17 |
Ratchaneevan Aeimlapa, Narattaphol Charoenphandhu, Panan Suntornsaratoon, Kannikar Wongdee, Wacharaporn Tiyasatkulkovit, Kanchana Kengkoom, Nateetip Krishnamra. Insulin does not rescue cortical and trabecular bone loss in type 2 diabetic Goto-Kakizaki rats. The Journal of Physiological Sciences 2018; 68(5): 531 doi: 10.1007/s12576-017-0558-4
|
18 |
Ratchaneevan Aeimlapa, Kannikar Wongdee, Narattaphol Charoenphandhu, Panan Suntornsaratoon, Nateetip Krishnamra. Premature chondrocyte apoptosis and compensatory upregulation of chondroregulatory protein expression in the growth plate of Goto–Kakizaki diabetic rats. Biochemical and Biophysical Research Communications 2014; 452(3): 395 doi: 10.1016/j.bbrc.2014.08.085
|
19 |
Verónica White, Alicia Jawerbaum, María B. Mazzucco, Martin Gauster, Gernot Desoye, Ursula Hiden. Diabetes-associated changes in the fetal insulin/insulin-like growth factor system are organ specific in rats. Pediatric Research 2015; 77(1): 48 doi: 10.1038/pr.2014.139
|
20 |
Puneet Gaitonde, Shannon A. Miller, Mirjam N. Trame, Stephan Schmidt. Translational Research Methods for Diabetes, Obesity and Cardiometabolic Drug Development. 2015; : 243 doi: 10.1007/978-1-4471-4920-0_10
|