Review
Copyright ©The Author(s) 2018.
World J Gastrointest Endosc. Oct 16, 2018; 10(10): 239-249
Published online Oct 16, 2018. doi: 10.4253/wjge.v10.i10.239
Table 1 Summary of clinical studies involving computer-aided detection and computer-aided diagnosis in real time (during live colonoscopy or video recording)
ReferenceYearType of CADEndoscopic Modality/ InputProcessing ModalityStudy DesignSensitivitySpecificityAccuracyLatencyNotes
Wang et al[25]2015CADeWhite-Light EndoscopyPolyp-Edge Detection Algorithm and Shot ExtractionRetrospective--97.7%10.02 s36 false-positives per video
Fernández-Esparrach et al[38]2016CADeWhite-Light EndoscopyWM-DOVARetrospective70.4%272.4%2--Accuracy and latency reported for this study
Tajbakhsh et al[37]2016CADeWhite-Light EndoscopyHybrid Context-Shape Extractor, Edge MappingRetrospective88.0%2 for CVC-ColonDB--0.3 s0.1 False positives per frame
48.0% for ASU-Mayo
Wang et al[40]2017CADeWhite-Light EndoscopyDeep learning, built on SegNet ArchitectureRetrospective91.6%296.3%2100.0%10.04 s
Misawa et al[41]2018CADeWhite-Light EndoscopyDeep learning, built on a DCNNRetrospective90.0%263.3%276.5%1-
Kominami et al[54]2016CADxMagnifying NBIBag of features representation, SVM outputProspective93.0%393.3%393.2%4-97.5% concordance between automatic diagnosis and endoscopic diagnosis
Komeda et al[75]2017CADxA mix of White-Light Endoscopy, NBI and ChromoendoscopyDeep learning, built on a CNNRetrospective--75.1%5
Byrne et al[59]2017CADxWhite-Light Endoscopy and NBIDeep learning, built on a DCNNRetrospective98.0%3683.0% 3694.0%40.05 sFor 19 polyps the system was unable to reach a credibility score threshold of ≥ 50%
Mori et al[58]2017CADxEndocytoscopy and NBITexture analysis, automatic vessel extraction, SVM outputProspective97.0%367.0%383.0%4