BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021;13:3484. [PMID: 34298707 DOI: 10.3390/cancers13143484] [Cited by in Crossref: 2] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Xue Q, Zhang J, Jiao J, Qin W, Yang X. Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities. Front Oncol 2022;12:980239. [DOI: 10.3389/fonc.2022.980239] [Reference Citation Analysis]
2 Shi Y, Wang D, Xiao Y, Pan T, Lu D, Zhu G, Xiong J, Li B, Xin H. Light‐Induced Cold Marangoni Flow for Microswarm Actuation: From Intelligent Behaviors to Collective Drug Delivery. Laser & Photonics Reviews. [DOI: 10.1002/lpor.202200533] [Reference Citation Analysis]
3 Lazewski D, Kucinska M, Potapskiy E, Kuzminska J, Tezyk A, Popenda L, Jurga S, Teubert A, Gdaniec Z, Kujawski J, Grzyb K, Pedzinski T, Murias M, Wierzchowski M. Novel Short PEG Chain-Substituted Porphyrins: Synthesis, Photochemistry, and In Vitro Photodynamic Activity against Cancer Cells. Int J Mol Sci 2022;23:10029. [PMID: 36077451 DOI: 10.3390/ijms231710029] [Reference Citation Analysis]
4 Choi J, Sun IC, Sook Hwang H, Yeol Yoon H, Kim K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv Drug Deliv Rev 2022;186:114344. [PMID: 35580813 DOI: 10.1016/j.addr.2022.114344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Meivita MP, Chan SSY, Go SX, Lee D, Bajalovic N, Loke DK. WS 2 /Polyethylene Glycol Nanostructures for Ultra-Efficient MCF-7 Cancer Cell Ablation and Electrothermal Therapy. ACS Omega. [DOI: 10.1021/acsomega.2c00284] [Reference Citation Analysis]
6 Kang W, Tian Y, Zhao Y, Yin X, Teng Z. Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Adv 2022;12:16927-41. [PMID: 35754870 DOI: 10.1039/d2ra01102f] [Reference Citation Analysis]
7 Quintanilla M, Henriksen-Lacey M, Renero-Lecuna C, Liz-Marzán LM. Challenges for optical nanothermometry in biological environments. Chem Soc Rev 2022. [PMID: 35587578 DOI: 10.1039/d2cs00069e] [Reference Citation Analysis]
8 Figueira F, Tomé JPC, Paz FAA. Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents. Molecules 2022;27:3111. [PMID: 35630585 DOI: 10.3390/molecules27103111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li X, Sheng L, Sbodio AO, Zhang Z, Sun G, Blanco-ulate B, Wang L. Photodynamic control of fungicide-resistant Penicillium digitatum by vitamin K3 water-soluble analogue. Food Control 2022;135:108807. [DOI: 10.1016/j.foodcont.2021.108807] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
10 Yuan S, Liu Z, Liang T, Jin D, Wang H, Qiao R, Dong M, Gong P. Au-decorated NaYF4:Yb,Tm@NaGdF4:Yb@TiO2 nanophotosensitizers for photodynamic therapy and MR/PET imaging. Materials Letters 2022;314:131926. [DOI: 10.1016/j.matlet.2022.131926] [Reference Citation Analysis]
11 Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022;13:126-47. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Losch MS, Kardux F, Dankelman J, Hendriks BHW. Steering light in fiber-optic medical devices: a patent review. Expert Rev Med Devices 2022;:1-13. [PMID: 35298323 DOI: 10.1080/17434440.2022.2054334] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. Riv Nuovo Cim . [DOI: 10.1007/s40766-022-00031-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Diaz-Diestra D, Gholipour HM, Bazian M, Thapa B, Beltran-Huarac J. Photodynamic Therapeutic Effect of Nanostructured Metal Sulfide Photosensitizers on Cancer Treatment. Nanoscale Res Lett 2022;17:33. [PMID: 35258742 DOI: 10.1186/s11671-022-03674-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zou Q, Bao J, Yan X. Functional Nanomaterials Based on Self-Assembly of Endogenic NIR-Absorbing Pigments for Diagnostic and Therapeutic Applications. Small Methods 2022;:e2101359. [PMID: 35142112 DOI: 10.1002/smtd.202101359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Ebid A, El-shamy S, Thabet A, El-boshy M, Abedalla M, Ali T. Effect of pulsed electromagnetic field versus pulsed high intensity laser in the treatment of men with osteopenia or osteoporosis: a randomized controlled trial. F1000Res 2022;11:86. [DOI: 10.12688/f1000research.75334.1] [Reference Citation Analysis]
17 Drzewiecka-Matuszek A, Rutkowska-Zbik D. Application of TD-DFT Theory to Studying Porphyrinoid-Based Photosensitizers for Photodynamic Therapy: A Review. Molecules 2021;26:7176. [PMID: 34885763 DOI: 10.3390/molecules26237176] [Reference Citation Analysis]
18 Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021;13:4447. [PMID: 34503255 DOI: 10.3390/cancers13174447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 23] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kim H, Kim MW, Jeong YI, Yang HS. Redox-Sensitive and Folate-Receptor-Mediated Targeting of Cervical Cancer Cells for Photodynamic Therapy Using Nanophotosensitizers Composed of Chlorin e6-Conjugated β-Cyclodextrin via Diselenide Linkage. Cells 2021;10:2190. [PMID: 34571839 DOI: 10.3390/cells10092190] [Cited by in F6Publishing: 2] [Reference Citation Analysis]