BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deshazer G, Merck D, Hagmann M, Dupuy DE, Prakash P. Physical modeling of microwave ablation zone clinical margin variance: Modeling of microwave ablation zone clinical margin variance. Med Phys 2016;43:1764-76. [DOI: 10.1118/1.4942980] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Liu D, Brace CL. Evaluation of tissue deformation during radiofrequency and microwave ablation procedures: Influence of output energy delivery. Med Phys 2019;46:4127-34. [PMID: 31260115 DOI: 10.1002/mp.13688] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
2 Ledoux G, Amroun K, Rhaiem R, Cagniet A, Aghaei A, Bouche O, Hoeffel C, Sommacale D, Piardi T, Kianmanesh R. Fully laparoscopic thermo-ablation of liver malignancies with or without liver resection: tumor location is an independent local recurrence risk factor. Surg Endosc 2021;35:845-53. [PMID: 32076859 DOI: 10.1007/s00464-020-07456-0] [Reference Citation Analysis]
3 Sebek J, Taeprasartsit P, Wibowo H, Beard WL, Bortel R, Prakash P. Microwave ablation of lung tumors: A probabilistic approach for simulation-based treatment planning. Med Phys 2021;48:3991-4003. [PMID: 33964020 DOI: 10.1002/mp.14923] [Reference Citation Analysis]
4 Singh S, Repaka R, Al-jumaily A. Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. Int J RF Microw Comput Aided Eng 2019;29:e21581. [DOI: 10.1002/mmce.21581] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
5 Radosevic A, Prieto D, Burdío F, Berjano E, Prakash P, Trujillo M. Short pulsed microwave ablation: computer modeling and ex vivo experiments. Int J Hyperthermia 2021;38:409-20. [PMID: 33719808 DOI: 10.1080/02656736.2021.1894358] [Reference Citation Analysis]
6 Deshazer G, Prakash P, Merck D, Haemmerich D. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. Int J Hyperthermia 2017;33:74-82. [PMID: 27431040 DOI: 10.1080/02656736.2016.1206630] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
7 Ruiter SJS, Heerink WJ, de Jong KP. Liver microwave ablation: a systematic review of various FDA-approved systems. Eur Radiol 2019;29:4026-35. [PMID: 30506218 DOI: 10.1007/s00330-018-5842-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
8 Poch FGM, Eminger KJ, Neizert CA, Geyer B, Rieder C, Ballhausen H, Niehues SM, Vahldiek JL, Lehmann KS. Cooling Effects Occur in Hepatic Microwave Ablation At Low Vascular Flow Rates and in Close Proximity to Liver Vessels - Ex Vivo. Surg Innov 2022;:15533506221074619. [PMID: 35227134 DOI: 10.1177/15533506221074619] [Reference Citation Analysis]
9 Hu H, Nan Q, Tian Z, Gao X. Study on the Microwave Ablation Effect of Inflated Porcine Lung. Applied Sciences 2022;12:5916. [DOI: 10.3390/app12125916] [Reference Citation Analysis]
10 Fahrenholtz SJ, Madankan R, Danish S, Hazle JD, Stafford RJ, Fuentes D. Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images. Int J Hyperthermia 2018;34:101-11. [PMID: 28540820 DOI: 10.1080/02656736.2017.1319974] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
11 Izaaryene J, Drai M, Deniel C, Bridge P, Rico G, Daidj N, Gilabert M, Ewald J, Turrini O, Piana G. Computed tomography-guided microwave ablation of perivascular liver metastases from colorectal cancer: a study of the ablation zone, feasibility, and safety. Int J Hyperthermia 2021;38:887-99. [PMID: 34085891 DOI: 10.1080/02656736.2021.1912413] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Garnon J, Koch G, Caudrelier J, Boatta E, Rao P, Nouri-Neuville M, Ramamurthy N, Cazzato RL, Gangi A. Hydrodissection of the Retrohepatic Space: A Technique to Physically Separate a Liver Tumour from the Inferior Vena Cava and the Ostia of the Hepatic Veins. Cardiovasc Intervent Radiol 2019;42:137-44. [PMID: 30386883 DOI: 10.1007/s00270-018-2105-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Poch FG, Geyer B, Neizert CA, Gemeinhardt O, Niehues SM, Vahldiek JL, Frericks B, Lehmann KS. Periportal fields cause stronger cooling effects than veins in hepatic microwave ablation: an in vivo porcine study. Acta Radiol 2021;62:322-8. [PMID: 32493033 DOI: 10.1177/0284185120928929] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Lopresto V, Argentieri A, Pinto R, Cavagnaro M. Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures. Phys Med Biol 2019;64:105016. [DOI: 10.1088/1361-6560/ab1663] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
15 Hendriks P, Berkhout WEM, Kaanen CI, Sluijter JH, Visser IJ, van den Dobbelsteen JJ, de Geus-Oei LF, Webb AG, Burgmans MC. Performance of the Emprint and Amica Microwave Ablation Systems in ex vivo Porcine Livers: Sphericity and Reproducibility Versus Size. Cardiovasc Intervent Radiol 2021;44:952-8. [PMID: 33462682 DOI: 10.1007/s00270-020-02742-9] [Reference Citation Analysis]
16 Weng X, Song H, Fu T, Gao Y, Fan J, Ai D, Lin Y, Yang J. An optimal ablation time prediction model based on minimizing the relapse risk. Comput Methods Programs Biomed 2021;212:106438. [PMID: 34656904 DOI: 10.1016/j.cmpb.2021.106438] [Reference Citation Analysis]
17 Bouda D, Barrau V, Raynaud L, Dioguardi Burgio M, Paulatto L, Roche V, Sibert A, Moussa N, Vilgrain V, Ronot M. Factors Associated with Tumor Progression After Percutaneous Ablation of Hepatocellular Carcinoma: Comparison Between Monopolar Radiofrequency and Microwaves. Results of a Propensity Score Matching Analysis. Cardiovasc Intervent Radiol 2020;43:1608-18. [PMID: 32533309 DOI: 10.1007/s00270-020-02549-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
18 Park WKC, Maxwell AWP, Frank VE, Primmer MP, Paul JB, Collins SA, Lombardo KA, Lu S, Borjeson TM, Baird GL, Dupuy DE. The in vivo performance of a novel thermal accelerant agent used for augmentation of microwave energy delivery within biologic tissues during image-guided thermal ablation: a porcine study. International Journal of Hyperthermia 2018;34:11-8. [DOI: 10.1080/02656736.2017.1317367] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
19 Deshazer G, Hagmann M, Merck D, Sebek J, Moore KB, Prakash P. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models. Med Phys 2017;44:4859-68. [DOI: 10.1002/mp.12359] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
20 Habert P, Di Bisceglie M, Hak JF, Brige P, Chopinet S, Mancini J, Bartoli A, Vidal V, Roux C, Tselikas L, De Baere T, Gaubert JY. Percutaneous lung and liver CT-guided ablation on swine model using microwave ablation to determine ablation size for clinical practice. Int J Hyperthermia 2021;38:1140-8. [PMID: 34353206 DOI: 10.1080/02656736.2021.1961883] [Reference Citation Analysis]
21 Heerink WJ, Solouki AM, Vliegenthart R, Ruiter SJS, Sieders E, Oudkerk M, de Jong KP. The relationship between applied energy and ablation zone volume in patients with hepatocellular carcinoma and colorectal liver metastasis. Eur Radiol 2018;28:3228-36. [PMID: 29536242 DOI: 10.1007/s00330-017-5266-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
22 Pfannenstiel A, Iannuccilli J, Cornelis FH, Dupuy DE, Beard WL, Prakash P. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance. International Journal of Hyperthermia 2022;39:664-74. [DOI: 10.1080/02656736.2021.1991012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Singh S, Melnik R. Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects. Phys Med Biol 2019;64:245008. [PMID: 31600740 DOI: 10.1088/1361-6560/ab4cc5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Lopresto V, Pinto R, Farina L, Cavagnaro M. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning. Med Eng Phys 2017;46:63-70. [PMID: 28647287 DOI: 10.1016/j.medengphy.2017.06.008] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 7.6] [Reference Citation Analysis]
25 Deshazer G, Merck D, Hagmann M, Dupuy DE, Prakash P. Physical modeling of microwave ablation zone clinical margin variance: Modeling of microwave ablation zone clinical margin variance. Med Phys 2016;43:1764-76. [DOI: 10.1118/1.4942980] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
26 Servin F, Collins JA, Heiselman JS, Frederick-dyer KC, Planz VB, Geevarghese SK, Brown DB, Miga MI. Fat Quantification Imaging and Biophysical Modeling for Patient-Specific Forecasting of Microwave Ablation Therapy. Front Physiol 2022;12:820251. [DOI: 10.3389/fphys.2021.820251] [Reference Citation Analysis]
27 Zia G, Sebek J, Prakash P. Temperature-dependent dielectric properties of human uterine fibroids over microwave frequencies. Biomed Phys Eng Express 2021;7. [PMID: 34534970 DOI: 10.1088/2057-1976/ac27c2] [Reference Citation Analysis]