BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang XH, Qin-Ma, Wu HP, Khamis MY, Li YH, Ma LY, Liu HM. A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J Med Chem 2021;64:1362-91. [PMID: 33523672 DOI: 10.1021/acs.jmedchem.0c01782] [Cited by in Crossref: 34] [Cited by in F6Publishing: 42] [Article Influence: 34.0] [Reference Citation Analysis]
Number Citing Articles
1 Nagasaka M, Miyajima C, Aoki H, Aoyama M, Morishita D, Inoue Y, Hayashi H. Insights into Regulators of p53 Acetylation. Cells 2022;11:3825. [DOI: 10.3390/cells11233825] [Reference Citation Analysis]
2 Si L, Lai T, Zhao J, Jin Y, Qi M, Li M, Fu H, Shi X, Ma L, Guo R. Identification of a novel pyridine derivative with inhibitory activity against ovarian cancer progression in vivo and in vitro. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1064485] [Reference Citation Analysis]
3 Esther Rubavathy SM, Palanisamy K, Priyankha S, Thilagavathi R, Prakash M, Selvam C. Discovery of novel HDAC8 inhibitors from natural compounds by in silico high throughput screening. Journal of Biomolecular Structure and Dynamics 2022. [DOI: 10.1080/07391102.2022.2142668] [Reference Citation Analysis]
4 Reßing N, Schliehe-diecks J, Watson PR, Sönnichsen M, Cragin AD, Schöler A, Yang J, Schäker-hübner L, Borkhardt A, Christianson DW, Bhatia S, Hansen FK. Development of Fluorinated Peptoid-Based Histone Deacetylase (HDAC) Inhibitors for Therapy-Resistant Acute Leukemia. J Med Chem 2022. [DOI: 10.1021/acs.jmedchem.2c01418] [Reference Citation Analysis]
5 Chann AS, Charnley M, Newton LM, Newbold A, Wiede F, Tiganis T, Humbert PO, Johnstone RW, Russell SM. Stepwise progression of β-selection during T cell development involves histone deacetylation. Life Sci Alliance 2023;6. [PMID: 36283704 DOI: 10.26508/lsa.202201645] [Reference Citation Analysis]
6 Brindisi M, Barone S, Rossi A, Cassese E, Del Gaudio N, Feliz Morel ÁJ, Filocamo G, Alberico A, De Fino I, Gugliandolo D, Babaei M, Bove G, Croce M, Montesano C, Altucci L, Bragonzi A, Summa V. Efficacy of selective histone deacetylase 6 inhibition in mouse models of Pseudomonas aeruginosa infection: A new glimpse for reducing inflammation and infection in cystic fibrosis. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.175349] [Reference Citation Analysis]
7 Tang K, Wang S, Gao W, Song Y, Yu B. Harnessing the cyclization strategy for new drug discovery. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.09.022] [Reference Citation Analysis]
8 Yue K, Sun S, Jia G, Qin M, Hou X, Chou CJ, Huang C, Li X. First-in-Class Hydrazide-Based HDAC6 Selective Inhibitor with Potent Oral Anti-Inflammatory Activity by Attenuating NLRP3 Inflammasome Activation. J Med Chem 2022. [PMID: 36073117 DOI: 10.1021/acs.jmedchem.2c00853] [Reference Citation Analysis]
9 Fontana A, Cursaro I, Carullo G, Gemma S, Butini S, Campiani G. A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors. Int J Mol Sci 2022;23:10014. [PMID: 36077415 DOI: 10.3390/ijms231710014] [Reference Citation Analysis]
10 Jo H, Shim K, Jeoung D. Targeting HDAC6 to Overcome Autophagy-Promoted Anti-Cancer Drug Resistance. IJMS 2022;23:9592. [DOI: 10.3390/ijms23179592] [Reference Citation Analysis]
11 Li X, Liu X, Wang S, Shi X, Lu M, Hao X, Fu Y, Zhang Y, Jia Q, He D. Design, Synthesis, and biological evaluation of HDAC6 inhibitors based on Cap modification strategy. Bioorganic Chemistry 2022;125:105874. [DOI: 10.1016/j.bioorg.2022.105874] [Reference Citation Analysis]
12 Dogan B. Machine learning approaches to quantitively predict selectivity of compounds against hDAC1 and hDAC6 isoforms.. [DOI: 10.1101/2022.07.10.499476] [Reference Citation Analysis]
13 Guo Z, Zhang Y, Bao Y, Huang Z, Gu X, Wang G, Li J. Synthesis and structure-activity relationship of thiol-based histone deacetylase 6 inhibitors. Chem Biol Drug Des 2022;100:90-107. [PMID: 35404520 DOI: 10.1111/cbdd.14055] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Hashimoto K, Ide S, Arata M, Nakata A, Ito A, Ito TK, Kudo N, Lin B, Nunomura K, Tsuganezawa K, Yoshida M, Nagaoka Y, Sumiyoshi T. Discovery of Benzylpiperazine Derivatives as CNS-Penetrant and Selective Histone Deacetylase 6 Inhibitors. ACS Med Chem Lett . [DOI: 10.1021/acsmedchemlett.2c00081] [Reference Citation Analysis]
15 Gu X, Peng X, Zhang H, Han B, Jiao M, Chen Q, Zhang Q. Discovery of Indole-Containing Benzamide Derivatives as HDAC1 Inhibitors with In Vitro and In Vivo Antitumor Activities. Pharmaceutical Fronts 2022;04:e61-e70. [DOI: 10.1055/s-0042-1749373] [Reference Citation Analysis]
16 Xu Y, Tang H, Xu Y, Guo J, Zhao X, Meng Q, Xiao J. Design, Synthesis, Bioactivity Evaluation, Crystal Structures, and In Silico Studies of New α-Amino Amide Derivatives as Potential Histone Deacetylase 6 Inhibitors. Molecules 2022;27:3335. [DOI: 10.3390/molecules27103335] [Reference Citation Analysis]
17 Brusa I, Sondo E, Falchi F, Pedemonte N, Roberti M, Cavalli A. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. J Med Chem 2022. [PMID: 35377645 DOI: 10.1021/acs.jmedchem.1c01897] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Xu J, Zhao X, Jiang X, He L, Wu X, Wang J, Chen Q, Li Y, Zhang M. Tubastatin A Improves Post-Resuscitation Myocardial Dysfunction by Inhibiting NLRP3-Mediated Pyroptosis Through Enhancing Transcription Factor EB Signaling. J Am Heart Assoc 2022;:e024205. [PMID: 35322683 DOI: 10.1161/JAHA.121.024205] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Zhang T, Zhao X, Sun X, Tian W, Wang C, Wang M, Zhang Y, Chen X, Zheng C. Design, synthesis, and biological evaluation of novel histone deacetylase 6 selective inhibitors. Journal of Saudi Chemical Society 2022. [DOI: 10.1016/j.jscs.2022.101450] [Reference Citation Analysis]
20 Barone S, Cassese E, Alfano AI, Brindisi M, Summa V. Chasing a Breath of Fresh Air in Cystic Fibrosis (CF): Therapeutic Potential of Selective HDAC6 Inhibitors to Tackle Multiple Pathways in CF Pathophysiology. J Med Chem 2022. [PMID: 35148101 DOI: 10.1021/acs.jmedchem.1c02067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
21 Evans CA, Kim HR, Macfarlane SC, Nowicki PIA, Baltes C, Xu L, Widengren J, Lautenschläger F, Corfe BM, Gad AKB. Metastasising Fibroblasts Show an HDAC6-Dependent Increase in Migration Speed and Loss of Directionality Linked to Major Changes in the Vimentin Interactome. Int J Mol Sci 2022;23:1961. [PMID: 35216078 DOI: 10.3390/ijms23041961] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Vogelmann A, Jung M, Hansen FK, Schiedel M. Comparison of Cellular Target Engagement Methods for the Tubulin Deacetylases Sirt2 and HDAC6: NanoBRET, CETSA, Tubulin Acetylation, and PROTACs. ACS Pharmacol Transl Sci . [DOI: 10.1021/acsptsci.2c00004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
23 Kleemann A. Antineoplastic and Immunomodulating Agents (L). Ullmann's Encyclopedia of Industrial Chemistry 2022. [DOI: 10.1002/14356007.a05_001.pub4] [Reference Citation Analysis]
24 Ojha R, Chen IC, Hsieh CM, Nepali K, Lai RW, Hsu KC, Lin TE, Pan SL, Chen MC, Liou JP. Installation of Pargyline, a LSD1 Inhibitor, in the HDAC Inhibitory Template Culminated in the Identification of a Tractable Antiprostate Cancer Agent. J Med Chem 2021;64:17824-45. [PMID: 34908406 DOI: 10.1021/acs.jmedchem.1c00966] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Zhou M, Yuan M, Zhang M, Lei C, Aras O, Zhang X, An F. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur J Med Chem 2021;226:113825. [PMID: 34562854 DOI: 10.1016/j.ejmech.2021.113825] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
26 Li Y, Sang S, Ren W, Pei Y, Bian Y, Chen Y, Sun H. Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010-2020). Eur J Med Chem 2021;226:113874. [PMID: 34619465 DOI: 10.1016/j.ejmech.2021.113874] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
27 Wang XX, Xie F, Jia CC, Yan N, Zeng YL, Wu JD, Liu ZP. Synthesis and biological evaluation of selective histone deacetylase 6 inhibitors as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2021;225:113821. [PMID: 34517222 DOI: 10.1016/j.ejmech.2021.113821] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Samuelov L, Bochner R, Magal L, Malovitski K, Sagiv N, Nousbeck J, Keren A, Fuchs-Telem D, Sarig O, Gilhar A, Sprecher E. Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Exp Dermatol 2021. [PMID: 34787924 DOI: 10.1111/exd.14502] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Sandrone G, Cukier CD, Zrubek K, Marchini M, Vergani B, Caprini G, Fossati G, Steinkühler C, Stevenazzi A. Role of Fluorination in the Histone Deacetylase 6 (HDAC6) Selectivity of Benzohydroxamate-Based Inhibitors. ACS Med Chem Lett 2021;12:1810-7. [PMID: 34795871 DOI: 10.1021/acsmedchemlett.1c00425] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
30 Neganova M, Aleksandrova Y, Suslov E, Mozhaitsev E, Munkuev A, Tsypyshev D, Chicheva M, Rogachev A, Sukocheva O, Volcho K, Klochkov S. Novel Multitarget Hydroxamic Acids with a Natural Origin CAP Group against Alzheimer's Disease: Synthesis, Docking and Biological Evaluation. Pharmaceutics 2021;13:1893. [PMID: 34834312 DOI: 10.3390/pharmaceutics13111893] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Chann AS, Charnley M, Newton LM, Newbold A, Wiede F, Tiganis T, Humbert PO, Johnstone RW, Russell SM. Stepwise progression of β-selection during T cell development as revealed by histone deacetylation inhibition.. [DOI: 10.1101/2021.10.03.462949] [Reference Citation Analysis]
32 Li S, Zhao C, Zhang G, Xu Q, Liu Q, Zhao W, James Chou C, Zhang Y. Development of selective HDAC6 inhibitors with in vitro and in vivo anti-multiple myeloma activity. Bioorg Chem 2021;116:105278. [PMID: 34474303 DOI: 10.1016/j.bioorg.2021.105278] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Sabnis RW. Novel Histone Deacetylase 6 Inhibitors for Treating Alzheimer's Disease and Cancer. ACS Med Chem Lett 2021;12:1202-3. [PMID: 34413942 DOI: 10.1021/acsmedchemlett.1c00339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
34 Sabnis RW. Novel Histone Deacetylase Inhibitors for Treating HIV Infection. ACS Med Chem Lett 2021;12:1196-7. [PMID: 34413939 DOI: 10.1021/acsmedchemlett.1c00336] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
35 Zhang M, Wei W, Peng C, Ma X, He X, Zhang H, Zhou M. Discovery of novel pyrazolopyrimidine derivatives as potent mTOR/HDAC bi-functional inhibitors via pharmacophore-merging strategy. Bioorg Med Chem Lett 2021;49:128286. [PMID: 34314844 DOI: 10.1016/j.bmcl.2021.128286] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
36 Kurohara T, Tanaka K, Takahashi D, Ueda S, Yamashita Y, Takada Y, Takeshima H, Yu S, Itoh Y, Hase K, Suzuki T. Identification of Novel Histone Deacetylase 6-Selective Inhibitors Bearing 3,3,3-Trifluorolactic Amide (TFLAM) Motif as a Zinc Binding Group. Chembiochem 2021. [PMID: 34224197 DOI: 10.1002/cbic.202100255] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
37 Sabnis RW. 5-Fluoronicotinamide Derivatives as HDAC6 Inhibitors for Treating Heart Diseases. ACS Med Chem Lett 2021;12:953-4. [PMID: 34141079 DOI: 10.1021/acsmedchemlett.1c00282] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
38 Liang T, Xue J, Yao Z, Ye Y, Yang X, Hou X, Fang H. Design, synthesis and biological evaluation of 3, 4-disubstituted-imidazolidine-2, 5-dione derivatives as HDAC6 selective inhibitors. Eur J Med Chem 2021;221:113526. [PMID: 33992929 DOI: 10.1016/j.ejmech.2021.113526] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
39 T Tavares M, Shen S. Recent innovative advances in the discovery of selective HDAC6 inhibitors. Future Med Chem 2021;13:1017-9. [PMID: 33906379 DOI: 10.4155/fmc-2021-0040] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zhang XH, Kang HQ, Tao YY, Li YH, Zhao JR, Ya-Gao, Ma LY, Liu HM. Identification of novel 1,3-diaryl-1,2,4-triazole-capped histone deacetylase 6 inhibitors with potential anti-gastric cancer activity. Eur J Med Chem 2021;218:113392. [PMID: 33831778 DOI: 10.1016/j.ejmech.2021.113392] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]