Copyright
©The Author(s) 2017.
World J Hepatol. Nov 28, 2017; 9(33): 1239-1252
Published online Nov 28, 2017. doi: 10.4254/wjh.v9.i33.1239
Published online Nov 28, 2017. doi: 10.4254/wjh.v9.i33.1239
Direct-acting antiviral agent | Generic name (abbreviation) | Code name | Trade name | Active against HCV genotype (based on clinical trial outcomes) | Combination therapy |
NS3/4A protease inhibitors (-previr) | Telaprevir (TVR) | VX-950 | Incivek/Incivo | 1 | TVR + IFN ± RBV |
Boceprevir (BOC) | SCH-503034 EBP-520 | Victrelis | 1 | BOC + IFN ± RBV | |
Faldaprevir (FDV) | BI-201335 | - | 1 | FDV + Peg-IFN + RBV | |
Simeprevir (SIM) | TMC-435 | Olysio | 1 and 4 | SIM + SOF ± RBV | |
Vaniprevir (VNV) | MK-7009 | Vanihep | 1 | VNV + IFN ± RBV | |
Asunaprevir (ASV) | BMS-650032 | Sunvepra | 1 and 4 | ASV + DCV | |
Paritaprevir (PTV) | ABT-450 | Veruprevir | 1 and 4 | PTV+R+OBV+DAV ± RBV | |
Voxilaprevir (VOX) | GS-9857 | - | Pan-genotypic antiviral activity | VOX + SOF + VPR | |
Sovaprevir | ACH-1625 | - | 1 | Sovaprevir + ODV + RBV | |
Grazoprevir (GZP) | MK-5172 | - | 1a, 1b, 4 and 6 | Zepatier (GZP + EBV) | |
Danoprevir (DNV) | RG-7227 | - | 1 and 4 | DNV + PEG-IFN + RBV | |
ITMN-191 | DNV + R + PEG-IFN + RBV | ||||
ASC08 | |||||
Deldeprevir (DDV) | ACH-2684 ACH-0142684 | - | 1 | DDV + ODV | |
Neceprevir | |||||
Narlaprevir (NVR) | SCH-900518 | Arlansa | 1 | NVR + R + PEG-IFN ± RBV | |
Vedroprevir (VDV) | GS-9451 | - | 1 | VDV + LDV + SOF | |
VDV + LDV + TGV + RBV | |||||
Glecaprevir (GLE) | ABT-493 | - | Pan-genotypic antiviral activity | GLE + PIB ± RBV | |
- | GS-9256 | - | 1 | GS-9256 + PEG-IFN + RBV | |
GS-9256 + TGV + Peg-IFN ± RBV | |||||
NS5A replication complex inhibitors (-Asvir) | Daclatasvir (DCV) | BMS-790052 | Daklinza | 1, 2 and 3 | Sovodak (DCV + SOF) ± RBV |
DCV + VX-135 | |||||
Ledipasvir (LDV) | GS-5885 | - | 1, 3, 4, 5 and 6 | Harvoni (LDV + SOF) ± RBV | |
LDV + SOF ± (VDV or Radalbuvir) | |||||
Ombitasvir (OBV) | ABT-267 | - | 1 and 4 | Viekira Pak (OBV + PTV + R + DSV) ± RBV | |
Technivie (OBV + PTV + R) | |||||
Elbasvir (EBV) | MK-8742 | - | 1a, 1b, 4 and 6 | Zepatier (EBV + GZP) ± RBV | |
Velpatasvir (VPR) | GS-5816 | - | Pan-genotypic antiviral activity | Epclusa (VPR + SOF) ± RBV | |
Odalasvir (ODV) | ACH-3102 | - | 1 | ODV + Sovaprevir + RBV | |
Ravidasvir (RVD) | PPI-668 | - | 4 | RVD + SOF ± RBV | |
ASC16 | |||||
- | PPI-461 | - | 1 | - | |
- | JNJ-56914845 | - | 1 | GSK2336805 + PEG-IFN + RBV | |
GSK2336805 | GSK2336805 + VX-135 + SIM | ||||
Samatasvir | IDX-18719 IDX-719 | - | 1, 2, 3 and 4 | Samatasvir + SIM + RBV | |
MK-1894 | |||||
- | BMS-824393 | - | 1 | BMS-824393 + PEG-IFN + RBV | |
Pibrentasvir (PIB) | ABT-530 | - | Pan-genotypic antiviral activity | PIB + GLE ± RBV | |
Ruzasvir (RZR) | MK-8408 | - | Pan-genotypic antiviral activity | RZR + UPR + GZP | |
Nucleoside NS5B polymerase inhibitors | Sofosbuvir (SOF) | PSI-7977; | Sovaldi; Soforal | Pan-genotypic antiviral activity | SOF + IFN ± RBV |
(-Buvir) | GS-7977 | Sovodak (DCV + SOF) ± RBV | |||
Mericitabine (MCB) | RG-7128 | - | 1 and 4 | MCB + PEG-IFN + RBV | |
RO5024048 | MCB + DNV | ||||
MCB + R + DNV ± RBV | |||||
- | VX-135 | - | 1 | VX-135 + GSK2336805 + SIM | |
ALS-2200 | VX-135 + TVR + RBV | ||||
VX-135 + DCV | |||||
VX-135 + RBV | |||||
VX-135 + SIM | |||||
Valopicitabine | NM283 | - | 1 | Valopicitabine + Peg-IFN | |
Non-nucleoside NS5B polymerase inhibitors (-Buvir) | Beclabuvir (BCV) | BMS-791325 | - | 1 | BCV+ ASV+ DCV |
Dasabuvir (DAV) | ABT-333 | Exviera | 1 | DAV + OBV+ PTV + R ± RBV | |
Lomibuvir | VX-222 | - | 1 | VX-222 + TVR + RBV | |
VCH-222 | VX-222 + Filibuvir | ||||
Filibuvir | PF-00868554, | - | 1 | Filibuvir + Peg-IFN + RBV | |
PF-868554 | Filibuvir + VX-222 | ||||
Setrobuvir (STV) | ANA-598 | - | 1 | STV + IFN + RBV | |
RO-5466731 | STV + R + DNV + RBV ± MCB | ||||
RG-7790 | |||||
Nesbuvir (NBV) | HCV-796 | - | 1 | NBV +Peg-IFN + RBV | |
VB-19796 | |||||
Tegobuvir (TGV) | GS-9190 | - | 1 | TGV + GS-9256 +Peg-IFN ± RBV | |
TGV + LDV + VDV + RBV | |||||
Deleobuvir (DBV) | BI-207127 | - | 1 | DBV + PEG-IFN + RBV | |
DBV + FDV | |||||
DBV + FDV + RBV | |||||
Uprifosbuvir (UPR) | MK-3682 | - | Pan-genotypic antiviral activity | UPR + RZR | |
UPR + RZR + GZP | |||||
Radalbuvir | GS-9669 | - | 1 | Radalbuvir + LDV + SOF | |
AL-335 | ALS-335 | - | 1 | AL-335 + ODV + SIM |
Type of vaccine | Vaccine structure/adjuvant | Stage of development | Outcome | Application | Developer | Year | Current status | Ref. |
Recombinant protein vaccine | Recombinant E1 or E2/MF59 | 7 chimpanzees | Induce strong humoral immune response; complete protection in 5 chimpanzees | Prophylactic vaccine | Chiron/ Novartis | 1994 | Completed | [101] |
Recombinant E1 or E2/Alum | 4 Chimpanzees | Induce antigen-specific T-helper cytokines in either E1 or | Therapeutic vaccine | BPRC | 2011 | Published | [102] | |
Recombinant E1/Alum | Phase I 20 healthy volunteers | E2-vaccinated animals; clear HCV infection in only E1-vaccinated animals (neutralizing antibodies) Induce strong cellular and humoral anti-E1 responses | Therapeutic vaccine | Fujirebio Europe | 2004 | Published | [103] | |
Recombinant E1 and E2/MF59 | Phase I 60 healthy volunteers | Induce humoral and cellular immune responses | Prophylactic vaccine | Novartis | 2010 | Completed | [104] | |
Recombinant E1/Alum | Phase I/II 20 healthy volunteers and 35 patients with chronic HCV infection/122 HCV-infected patients | Induce HCV specific humoral and cellular immune responses (Th1 type); no change in HCV viral load | Therapeutic vaccine | Innogenetics/ GenImmune | 2003/2008 | Published | [103,105,106] | |
HCV core protein/ISCOMATRIX | Phase I/IIa 30 healthy volunteers | Induce strong humoral immune responses in all except one patients; induce CD8+ T cell responses in 2 of 8 patients receiving the highest dose | Prophylactic vaccine | CSL Ltd | 2009 | Published | [107] | |
GI5005: Inactivated recombinant Saccharomyces cerevisiae expressing NS3-core fusion protein/ GI-5005 plus SOC | Phase I/II 66 patients with chronic HCV infection/ | Improve SVR | Therapeutic vaccine | GlobeImmune | 2009/2010 | Completed | [108,109] | |
Peptide-based vaccine | Peptide from core protein (C35-C44)/ISA51 | Phase I 26 patients with chronic HCV infection | Induce peptide-specific cellular and humoral immune responses in 15 of 25 patients; decline HCV viral load in 2 of 25 patients | Therapeutic vaccine | Karume University | 2009 | Published | [110] |
Four peptides from E1, E2, NS3 and NS5A/Freund’s adjuvant | Phase I 12 nonresponder patients with chronic HCV infection | Induce peptide-specific cellular and humoral immune responses; decline HCV viral load in 3 patients | Therapeutic vaccine | Karume University | 2007 | Published | [111] | |
Autologous dendritic cell delivered six CD8+ T cell epitope peptides from core, NS3 and NS4B | Phase I 6 nonresponder patients with chronic HCV infection | Induce transient T-cell response | Therapeutic vaccine | Burnet Institute + others | 2010 | Completed | [112] | |
IC41: Five peptides from core, NS3, and NS4/Poly-L-arginine | Phase I/II 128 volunteers/60 non-responders with chronic HCV infection | Induce HCV-specific T-cell responses | Therapeutic vaccine | Intercell AG | 2006/2008 | Published | [113,114] | |
IC41/Poly-L-arginine + imiquimod | Phase I 54 healthy volunteers | Induce significant T cell responses; low immunogenicity of topical imiquimod | Therapeutic vaccine | Intercell AG | 2010 | Published | [115] | |
IC41 + imiquimod | Phase II 50 HCV-infected patients | Decline viral load; induce T cell responses | Therapeutic vaccine | Intercell AG | 2012 | Completed | [116] | |
Virus-like particles | Recombinant HCV-like particles (HCV-LPs) containing core, E1, and E2/AS01B | 4 chimpanzees | Induce HCV-specific cellular immune responses; viral clearance | Prophylactic vaccine | NIH | 2007 | Published | [117] |
Recombinant baculovirus containing core, E1 and E2 | Mice | Induce high titers of anti-E2 antibodies and strong HCV-specific cellular immune responses (CD8+ T and Th1 cells) | Prophylactic vaccine | NIH | 2001 | Published | [118] | |
Bacterial-vectored vaccine | Attenuated Salmonella typhimurium containing NS3 gene | Mice | Induce long-lasting T-cell responses | Therapeutic vaccine | NIH | 2001 | Published | [119] |
Viral-vectored vaccine | Recombinant adenoviral vectors and plasmid DNA expressing NS3-NS5B | 5 chimpanzees | Induce memory HCV-specific T cells; control of viremia | Prophylactic vaccine | NIH/Okairos | 2012 | Completed | [120] |
Multiple adenoviral vectors (Ad5, Ad6, Ad24, ChAd32 and ChAd33) expressing NS3-NS5B proteins | Mice and rhesus macaque | Induce strong cellular immune responses; long-term maintenance of memory cells | Prophylactic vaccine | Okairos | 2006 | Published | [121] | |
Recombinant vaccinia viruses (rVV) expressing core, E1, E2, P7, NS2 and NS3 | 4 chimpanzees | Induce cellular immune responses; reduce viral load; resolve HCV infection | Prophylactic vaccine | NYC Blood Center | 2008 | Published | [122] | |
Recombinant adenoviral vectors (Ad6 and ChAd3) expressing NS3-NS5B proteins | Phase I 40 healthy volunteers | Induce sustained HCV-specific T cell responses | Prophylactic vaccine | Okairos | 2012 | Completed | [123] | |
Adenovirus vector (Ad6 and ChAd3) expressing NS3-NS5B proteins | Phase I 36 healthy volunteers | Highly immunogenic; induce HCV specific T cell responses | Prophylactic vaccine | Okairos and Oxford University | 2009 | Published | [124] | |
TG4040: MVA vector expressing NS3, NS4 and NS5B proteins | Phase I 15 patients with chronic HCV infection | Decline HCV viral load in 7 of 15 patients associated with T-cell response | Therapeutic vaccine | Transgene | 2009 | Withdrawn | [125] | |
MVA and ChAd3 vectors expressing NS3, NS4, NS5A and NS5B proteins | Phase I/II Healthy at risk population (68/472 IDU) | July 28, 2018: Final data collection date | Prophylactic vaccine | NIAID | 2017 | Ongoing | [126] | |
TG4040 + SOC | Phase II 153 patients with chronic HCV infection | Induce HCV- and MVA-specific T-cell responses; develop anti-MVA antibodies; increase rate of early virologic response | Therapeutic vaccine | - | 2014 | Published | [127] | |
DNA vaccine | Recombinant DNA plasmid encoding E2 | 2 chimpanzees | Induce humoral and cellular immune responses; resolve the infection; prevent progression to chronicity | Prophylactic vaccine | NIAID/NIH | 2000 | Published | [128] |
Recombinant DNA plasmid and adenovirus vector expressing core, E1, E2 and NS3-5 | 8 chimpanzees | Induce HCV-specific T-cell and long-lasting E2-specific antibody responses; reduce viral load | Prophylactic vaccine | NIH | 2005 | Published | [129] | |
Recombinant DNA plasmids and MVA vector expressing core, E1, E2 and NS3 | 6 chimpanzees | Induce HCV-specific immune responses; reduce viral load; early control of acute HCV infection; fail to impact on chronicity | Prophylactic vaccine | Transgene | 2007 | Published | [130] | |
CIGB-230: Plasmid expressing core/E1/E2 plus recombinant core protein | Phase I 15 non-responder patients with chronic HCV infection | Induce humoral and cellular immune responses; no viral clearance | Therapeutic vaccine | University of Montreal + others | 2009 | Published | [131] | |
ChronVac-C: Plasmid expressing NS3 and NS4A delivered by in vivo electroporation | Phase I/IIa 12 HCV-infected patients | Decline HCV viral load in 4 of 6 patients receiving the highest dose with corresponding HCV-specific T-cell response in 3 patients | Therapeutic vaccine | Tripep AB | 2009 | Recruiting | [132] |
- Citation: Taherkhani R, Farshadpour F. Global elimination of hepatitis C virus infection: Progresses and the remaining challenges. World J Hepatol 2017; 9(33): 1239-1252
- URL: https://www.wjgnet.com/1948-5182/full/v9/i33/1239.htm
- DOI: https://dx.doi.org/10.4254/wjh.v9.i33.1239