Observational Study
Copyright ©The Author(s) 2024.
World J Hepatol. Feb 27, 2024; 16(2): 251-263
Published online Feb 27, 2024. doi: 10.4254/wjh.v16.i2.251
Table 1 Clinical parameter baseline data for training cohort, validation cohorts and prospective confirmatory cohorts
Variable1
DifG3BP1 in training cohort
Validation cohorts
Overall
T1 (< 0)
T2 (0-1)
T3 (> 1)
P value2
Patients (n)2448312041514
Age (yr), mean ± SD51.9 ± 13.253.20 ± 12.0850.91 ± 14.0752.10 ± 13.100.47754.35 ± 15.6
Men, n (%)204 (83.6)68 (81.9)99 (82.5)37 (90.2)0.45426 (82.8)
AFP, mean ± SD108.93 ± 170.1268.65 ± 119.17124.85 ± 180.26143.86 ± 211.320.024106.94 ± 114.56
WBC, mean ± SD7.19 ± 3.548.28 ± 4.266.61 ± 2.976.70 ± 3.000.0027.43 ± 3.65
N%, mean ± SD69.38 ± 11.8572.79 ± 10.6067.33 ± 12.3968.50 ± 11.350.00471.34 ± 12.38
SAA, mean ± SD9.33 ± 14.1010.27 ± 13.579.61 ± 15.096.63 ± 11.990.3859.56 ± 13.87
CRP, mean ± SD14.03 ± 20.3117.94 ± 23.6412.09 ± 17.9311.78 ± 18.840.09613.67 ± 18.48
PCT, mean ± SD0.62 ± 0.750.76 ± 0.920.55 ± 0.680.56 ± 0.540.130.65 ± 0.71
ALB (g/L), mean ± SD31.23 ± 4.0030.99 ± 3.5331.36 ± 4.4331.31 ± 3.610.79932.56 ± 4.15
PTA (%), mean ± SD43.69 ± 20.0137.24 ± 15.9046.35 ± 21.9948.97 ± 18.400.00142.17 ± 21.03
PT, mean ± SD20.56 ± 6.2123.13 ± 7.0919.41 ± 5.4118.74 ± 4.85< 0.00119.15 ± 6.12
INR, mean ± SD1.83 ± 0.592.07 ± 0.701.72 ± 0.481.67 ± 0.47< 0.0011.87 ± 0.61
ALT, mean ± SD276.93 ± 546.24185.54 ± 266.86332.65 ± 701.28298.85 ± 420.080.162295.13 ± 537.87
TBIL, mean ± SD322.21 ± 131.10353.56 ± 150.78303.54 ± 122.07313.37 ± 101.510.024317.81 ± 145.11
AST, mean ± SD247.66 ± 468.92179.95 ± 188.58292.26 ± 623.86254.20 ± 299.160.244238.98 ± 464.17
LDH, mean ± SD273.07 ± 82.84302.18 ± 70.80250.64 ± 84.55279.78 ± 82.64< 0.001286.46 ± 86.78
GFR, mean ± SD101.69 ± 25.0597.36 ± 27.28104.94 ± 24.51100.96 ± 20.710.104102.54 ± 26.33
PLT, mean ± SD111.18 ± 67.1996.40 ± 66.11118.06 ± 64.91120.95 ± 72.380.046106.54 ± 71.77
Family history of liver disease, n (%)336 (14.75)14 (16.9)17 (14.2)5 (12.2)0.76378 (15.2)
Treatment method = PE + DPMAS (%)20 (8.20)7 (8.6)6 (7.3)7 (8.6)0.93846 (8.9)
LOS time (months), mean ± SD35.55 (20.63)34.36 (19.78)36.51 (22.33)35.75 (19.84)0.79735.78 (21.34)
Diabetes, n (%)33 (13.52)11 (13.6)8 (9.8)14 (17.3)0.37369
ALF, n (%)53 (21.72)14 (26.41)29 (54.72)10 (18.87)111 (21.60)
ACLF, n (%)191 (78.28)69 (36.13)91 (47.64)31 (16.23)403 (78.40)
Table 2 Multivariable Cox regression analyses of difference of G3BP1 between the level of discharge and admission discharge and admission for predicting the risk for progression in training cohort

G3BP1 cut points
Progression (%)1
Unadjusted HR (95%CI)
P value
Model 13
Adjusted HR (95%CI) P value
Total cohort (n = 244)
    T1 + T2 G3BP1 (n = 161)≥ 014 (8.7)1.0 (Reference)1.0 (Reference)
    T3 G3BP1 (n = 83)< 064 (77.1)11.70 (6.50-21.04)< 0.0019.23 (5.08-16.75)< 0.001
Subgroup with MELD2 high risk (n = 154)
    T2 + T3 G3BP1 (n = 94)≥ 013 (13.8)1.0 (Reference)1.0 (Reference)
    T1 G3BP1 (n = 60)< 053 (88.3)8.01 (4.33-14.81)< 0.0015.71 (3.04-10.74)< 0.001
Subgroup with MELD low-medium risk (n = 90)
    T2 + T3 G3BP1 (n = 67)≥ 01 (1.5)1.0 (Reference)1.0 (Reference)
    T1 G3BP1 (n = 23)< 011 (47.8)39.46 (5.05-308.3)< 0.00123.80 (2.96-191.3)< 0.001
Table 3 Multivariable Cox regression analyses of biomarkers for predicting the risk for progression in training cohort
Biomarker
G3BP1 cut points
Progression (%)
Unadjusted HR (95%CI)
P value
Model 11
Adjusted HR (95%CI) P value
IL-1β (pg/mL)
    T1 IL-1β (n = 122)≤ 168.015 (12.3)1.0 (Reference)1.0 (Reference)
    T2 IL-1β (n = 122)> 168.058 (47.5)5.38 (3.03-9.54)< 0.014.27 (2.37-7.67)< 0.01
IL-18 (pg/mL)
    T1 IL-18 (n = 122)≤ 13.42538 (31.1)1.0 (Reference)1.0 (Reference)
    T2 IL-18 (n = 122)> 13.42535 (28.7)0.94 (0.59-1.49)0.780.95 (0.59-1.52)0.83
TNF-α (pg/mL)
    T1 TNF-α (n = 122)≤ 5.46546 (37.7)1.0 (Reference)1.0 (Reference)
    T2 TNF-α (n = 122)> 5.46527 (22.1)0.50 (0.31-0.80)< 0.010.55 (0.34-0.90)0.02
Table 4 Performance of biomarkers and/or clinical data for predicting risk for progression in training and validation cohorts
BiomarkersC statistic (95%CI)1
Training cohort (n = 244)
Validation cohort (n = 514)2
Univariable models of biomarkers
    G3BP10.75 (0.68-0.81)0.75 (0.71-0.78)
    IL-1β0.68 (0.63-0.74)
    IL-180.54 (0.48-0.63)
    TNF-α0.57 (0.50-0.64)
Clinical models
    Clinical data0.78 (0.72-0.84)0.71 (0.66-0.76)
Models containing clinical data and biomarkers
    Clinical data + G3BP10.84 (0.77-0.89)0.80 (0.76-0.84)
    Clinical data + IL-1β0.80 (0.75-0.85)
    Clinical data + IL-180.78 (0.72-0.84)
    Clinical data + TNF-α0.78 (0.72-0.84)
Model containing clinical data and multiple biomarkers
    Clinical data + G3BP1 + IL-1β + IL-18 + TNF-α30.84 (0.79-0.90)