1 |
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023;431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Reference Citation Analysis]
|
2 |
Sadagopan S, Kar M, Parida S. Quantitative models of auditory cortical processing. Hear Res 2023;429:108697. [PMID: 36696724 DOI: 10.1016/j.heares.2023.108697] [Reference Citation Analysis]
|
3 |
Tasaka GI, Maggi C, Taha E, Mizrahi A. The local and long-range input landscape of inhibitory neurons in mouse auditory cortex. J Comp Neurol 2023;531:502-14. [PMID: 36453284 DOI: 10.1002/cne.25437] [Reference Citation Analysis]
|
4 |
Tobin M, Sheth J, Wood KC, Geffen MN. Localist versus distributed representation of sounds in the auditory cortex controlled by distinct inhibitory neuronal subtypes. bioRxiv 2023:2023. [PMID: 36778269 DOI: 10.1101/2023.02.01.526470] [Reference Citation Analysis]
|
5 |
Barrett JM, Martin ME, Shepherd GMG. Manipulation-specific cortical activity as mice handle food. Curr Biol 2022;32:4842-4853.e6. [PMID: 36243014 DOI: 10.1016/j.cub.2022.09.045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
6 |
Thivierge J, Giraud E, Lynn M, Théberge Charbonneau A. Key role of neuronal diversity in structured reservoir computing. Chaos 2022;32:113130. [DOI: 10.1063/5.0111131] [Reference Citation Analysis]
|
7 |
Kumar M, Handy G, Kouvaros S, Ljungqvist Brinson L, Bizup B, Doiron B, Tzounopoulos T. Cell-type-specific roles of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage.. [DOI: 10.1101/2022.09.15.508128] [Reference Citation Analysis]
|
8 |
Nagaraj H, Narayanan R. Plasticity manifolds and ion-channel degeneracy govern circadian oscillations of neuronal intrinsic properties in the suprachiasmatic nucleus.. [DOI: 10.1101/2022.07.22.501115] [Reference Citation Analysis]
|
9 |
Chai R, Zhang Y, Xin Y, Deng L, Xu N. Somatostatin interneurons in auditory cortex regulate sensory representations and contribute to auditory perception.. [DOI: 10.1101/2022.07.06.498950] [Reference Citation Analysis]
|
10 |
Chang JT, Fitzpatrick D. Development of visual response selectivity in cortical GABAergic interneurons. Nat Commun 2022;13:3791. [PMID: 35778379 DOI: 10.1038/s41467-022-31284-6] [Reference Citation Analysis]
|
11 |
Lakunina AA, Menashe N, Jaramillo S. Contributions of Distinct Auditory Cortical Inhibitory Neuron Types to the Detection of Sounds in Background Noise. eNeuro 2022;9:ENEURO. [PMID: 35168950 DOI: 10.1523/ENEURO.0264-21.2021] [Reference Citation Analysis]
|
12 |
Auerbach BD, Gritton HJ. Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 2022;16:799787. [DOI: 10.3389/fnins.2022.799787] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
13 |
Bigelow J, Morrill RJ, Olsen T, Hasenstaub AR. Visual modulation of firing and spectrotemporal receptive fields in mouse auditory cortex. Current Research in Neurobiology 2022;3:100040. [DOI: 10.1016/j.crneur.2022.100040] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Studer F, Barkat TR. Inhibition in the auditory cortex. Neurosci Biobehav Rev 2021;132:61-75. [PMID: 34822879 DOI: 10.1016/j.neubiorev.2021.11.021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
15 |
Morrill RJ, Bigelow J, Dekloe J, Hasenstaub AR. Audiovisual task switching rapidly modulates sound encoding in mouse auditory cortex.. [DOI: 10.1101/2021.11.09.467944] [Reference Citation Analysis]
|
16 |
Rikhye RV, Yildirim M, Hu M, Breton-Provencher V, Sur M. Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons. J Neurosci 2021;41:8761-78. [PMID: 34493543 DOI: 10.1523/JNEUROSCI.3176-20.2021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
17 |
Ter Wal M, Tiesinga PHE. Comprehensive characterization of oscillatory signatures in a model circuit with PV- and SOM-expressing interneurons. Biol Cybern 2021;115:487-517. [PMID: 34628539 DOI: 10.1007/s00422-021-00894-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
18 |
Nocon JC, Gritton HJ, James NM, Han X, Sen K. Parvalbumin neurons, temporal coding, and cortical noise in complex scene analysis.. [DOI: 10.1101/2021.09.11.459906] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
19 |
Dorsett C, Philpot BD, Smith SL, Smith IT. The Impact of SST and PV Interneurons on Nonlinear Synaptic Integration in the Neocortex. eNeuro 2021;8:ENEURO. [PMID: 34400470 DOI: 10.1523/ENEURO.0235-21.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
20 |
Angeloni CF, Młynarski W, Piasini E, Williams AM, Wood KC, Garami L, Hermundstad A, Geffen MN. Cortical efficient coding dynamics shape behavioral performance.. [DOI: 10.1101/2021.08.11.455845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Bigelow J, Morrill RJ, Olsen T, Bazarini SN, Hasenstaub AR. Visual modulation of spectrotemporal receptive fields in mouse auditory cortex.. [DOI: 10.1101/2021.08.06.455445] [Reference Citation Analysis]
|
22 |
Chang JT, Fitzpatrick D. Development of Visual Response Selectivity in Cortical GABAergic Interneurons.. [DOI: 10.1101/2021.07.21.453281] [Reference Citation Analysis]
|
23 |
Lakunina AA, Menashe N, Jaramillo S. Contributions of distinct auditory cortical inhibitory neuron types to the detection of sounds in background noise.. [DOI: 10.1101/2021.06.12.448208] [Reference Citation Analysis]
|
24 |
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021;31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
|
25 |
Wyrick D, Mazzucato L. State-Dependent Regulation of Cortical Processing Speed via Gain Modulation. J Neurosci 2021;41:3988-4005. [PMID: 33858943 DOI: 10.1523/JNEUROSCI.1895-20.2021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
26 |
Hoseini MS, Higashikubo B, Cho FS, Chang AH, Clemente-Perez A, Lew I, Ciesielska A, Stryker MP, Paz JT. Gamma rhythms and visual information in mouse V1 specifically modulated by somatostatin+ neurons in reticular thalamus. Elife 2021;10:e61437. [PMID: 33843585 DOI: 10.7554/eLife.61437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
27 |
Mossing DP, Veit J, Palmigiano A, Miller KD, Adesnik H. Antagonistic inhibitory subnetworks control cooperation and competition across cortical space.. [DOI: 10.1101/2021.03.31.437953] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
28 |
Paez Segala MG, Looger LL. Optogenetics. Molecular Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00092-2] [Reference Citation Analysis]
|
29 |
Shaheen LA, Slee SJ, David SV. Task Engagement Improves Neural Discriminability in the Auditory Midbrain of the Marmoset Monkey. J Neurosci 2021;41:284-97. [PMID: 33208469 DOI: 10.1523/JNEUROSCI.1112-20.2020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
30 |
Spool JA, Macedo-lima M, Scarpa G, Morohashi Y, Yazaki-sugiyama Y, Remage-healey L. Genetically-identified cell types in avian pallium mirror core principles of excitatory and inhibitory neurons in mammalian cortex.. [DOI: 10.1101/2020.11.11.374553] [Reference Citation Analysis]
|
31 |
Echagarruga CT, Gheres KW, Norwood JN, Drew PJ. nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. Elife 2020;9:e60533. [PMID: 33016877 DOI: 10.7554/eLife.60533] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
|
32 |
Hertäg L, Sprekeler H. Learning prediction error neurons in a canonical interneuron circuit. Elife 2020;9:e57541. [PMID: 32820723 DOI: 10.7554/eLife.57541] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
|
33 |
Slater BJ, Isaacson JS. Interhemispheric Callosal Projections Sharpen Frequency Tuning and Enforce Response Fidelity in Primary Auditory Cortex. eNeuro 2020;7:ENEURO. [PMID: 32769158 DOI: 10.1523/ENEURO.0256-20.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Park Y, Geffen MN. A circuit model of auditory cortex. PLoS Comput Biol 2020;16:e1008016. [PMID: 32716912 DOI: 10.1371/journal.pcbi.1008016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
35 |
Liu L, Xu H, Wang J, Li J, Tian Y, Zheng J, He M, Xu TL, Wu ZY, Li XM, Duan SM, Xu H. Cell type-differential modulation of prefrontal cortical GABAergic interneurons on low gamma rhythm and social interaction. Sci Adv 2020;6:eaay4073. [PMID: 32832654 DOI: 10.1126/sciadv.aay4073] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
|
36 |
Deng D, Masri S, Yao L, Ma X, Cao X, Yang S, Bao S, Zhou Q. Increasing endogenous activity of NMDARs on GABAergic neurons increases inhibition, alters sensory processing and prevents noise-induced tinnitus. Sci Rep 2020;10:11969. [PMID: 32686710 DOI: 10.1038/s41598-020-68652-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
37 |
Bos H, Oswald A, Doiron B. Untangling stability and gain modulation in cortical circuits with multiple interneuron classes.. [DOI: 10.1101/2020.06.15.148114] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
38 |
Cho KKA, Davidson TJ, Bouvier G, Marshall JD, Schnitzer MJ, Sohal VS. Cross-hemispheric gamma synchrony between prefrontal parvalbumin interneurons supports behavioral adaptation during rule shift learning. Nat Neurosci 2020;23:892-902. [PMID: 32451483 DOI: 10.1038/s41593-020-0647-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 10.7] [Reference Citation Analysis]
|
39 |
Hoseini MS, Higashikubo B, Cho FS, Chang AH, Clemente-perez A, Lew I, Stryker M, Paz JT. Gamma rhythms and visual information in mouse V1 specifically modulated by somatostatin-positive neurons in reticular thalamus.. [DOI: 10.1101/2020.05.06.081877] [Reference Citation Analysis]
|
40 |
Wyrick D, Mazzucato L. State-dependent regulation of cortical processing speed via gain modulation.. [DOI: 10.1101/2020.04.07.030700] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
41 |
Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020;14:13. [PMID: 32296311 DOI: 10.3389/fncir.2020.00013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
42 |
Kouvaros S, Kumar M, Tzounopoulos T. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex. Cereb Cortex 2020;30:3895-909. [PMID: 32090251 DOI: 10.1093/cercor/bhaa005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
|
43 |
Blackwell JM, Lesicko AM, Rao W, De Biasi M, Geffen MN. Auditory cortex shapes sound responses in the inferior colliculus. Elife 2020;9:e51890. [PMID: 32003747 DOI: 10.7554/eLife.51890] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
|
44 |
Maor I, Shwartz-Ziv R, Feigin L, Elyada Y, Sompolinsky H, Mizrahi A. Neural Correlates of Learning Pure Tones or Natural Sounds in the Auditory Cortex. Front Neural Circuits 2019;13:82. [PMID: 32047424 DOI: 10.3389/fncir.2019.00082] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
|
45 |
Shewcraft RA, Dean HL, Fabiszak MM, Hagan MA, Wong YT, Pesaran B. Excitatory/Inhibitory Responses Shape Coherent Neuronal Dynamics Driven by Optogenetic Stimulation in the Primate Brain. J Neurosci 2020;40:2056-68. [PMID: 31964718 DOI: 10.1523/JNEUROSCI.1949-19.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
46 |
Ferguson KA, Cardin JA. Mechanisms underlying gain modulation in the cortex. Nat Rev Neurosci 2020;21:80-92. [PMID: 31911627 DOI: 10.1038/s41583-019-0253-y] [Cited by in Crossref: 97] [Cited by in F6Publishing: 102] [Article Influence: 32.3] [Reference Citation Analysis]
|
47 |
Jun NY, Cardin JA. Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity. eNeuro 2020;7:ENEURO. [PMID: 31822522 DOI: 10.1523/ENEURO.0222-18.2019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
48 |
Malone BJ, Hasenstaub AR, Schreiner CE. Primary Auditory Cortex II. Some Functional Considerations. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24268-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
49 |
Gothner T, Gonçalves PJ, Sahani M, Linden JF, Hildebrandt KJ. Sustained Activation of PV+ Interneurons in Core Auditory Cortex Enables Robust Divisive Gain Control for Complex and Naturalistic Stimuli.. [DOI: 10.1101/832642] [Reference Citation Analysis]
|
50 |
Malik R, Pai EL, Rubin AN, Stafford AM, Angara K, Minasi P, Rubenstein JL, Sohal VS, Vogt D. Tsc1 represses parvalbumin expression and fast-spiking properties in somatostatin lineage cortical interneurons. Nat Commun 2019;10:4994. [PMID: 31676823 DOI: 10.1038/s41467-019-12962-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
|
51 |
Bigelow J, Morrill RJ, Dekloe J, Hasenstaub AR. Movement and VIP Interneuron Activation Differentially Modulate Encoding in Mouse Auditory Cortex. eNeuro 2019;6:ENEURO. [PMID: 31481397 DOI: 10.1523/ENEURO.0164-19.2019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
|
52 |
Hoseini MS, Rakela B, Flores-Ramirez Q, Hasenstaub AR, Alvarez-Buylla A, Stryker MP. Transplanted Cells Are Essential for the Induction But Not the Expression of Cortical Plasticity. J Neurosci 2019;39:7529-38. [PMID: 31391263 DOI: 10.1523/JNEUROSCI.1430-19.2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
53 |
Malik R, Pai EL, Rubin AN, Stafford AM, Angara K, Minasi P, Rubenstein JL, Sohal VS, Vogt D. The Tuberous Sclerosis gene, Tsc1, represses parvalbumin+/fast-spiking properties in somatostatin-lineage cortical interneurons.. [DOI: 10.1101/699892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
54 |
Luo L, Callaway EM, Svoboda K. Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron 2018;98:256-81. [PMID: 29673479 DOI: 10.1016/j.neuron.2018.03.040] [Cited by in Crossref: 247] [Cited by in F6Publishing: 250] [Article Influence: 61.8] [Reference Citation Analysis]
|
55 |
Li N, Chen S, Guo ZV, Chen H, Huo Y, Inagaki HK, Davis C, Hansel D, Guo C, Svoboda K. Spatiotemporal limits of optogenetic manipulations in cortical circuits.. [DOI: 10.1101/642215] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
56 |
Hoseini MS, Rakela B, Flores-ramirez Q, Hasenstaub AR, Alvarez-buylla A, Stryker MP. Transplanted cells are essential for the induction but not the expression of cortical plasticity.. [DOI: 10.1101/644377] [Reference Citation Analysis]
|
57 |
Park Y, Geffen MN. A Circuit Model of Auditory Cortex.. [DOI: 10.1101/626358] [Reference Citation Analysis]
|
58 |
Meda KS, Patel T, Braz JM, Malik R, Turner ML, Seifikar H, Basbaum AI, Sohal VS. Microcircuit Mechanisms through which Mediodorsal Thalamic Input to Anterior Cingulate Cortex Exacerbates Pain-Related Aversion. Neuron 2019;102:944-959.e3. [PMID: 31030955 DOI: 10.1016/j.neuron.2019.03.042] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 14.5] [Reference Citation Analysis]
|
59 |
Naka A, Veit J, Shababo B, Chance RK, Risso D, Stafford D, Snyder B, Egladyous A, Chu D, Sridharan S, Mossing DP, Paninski L, Ngai J, Adesnik H. Complementary networks of cortical somatostatin interneurons enforce layer specific control. Elife 2019;8:e43696. [PMID: 30883329 DOI: 10.7554/eLife.43696] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 14.3] [Reference Citation Analysis]
|
60 |
Cone JJ, Scantlen MD, Histed MH, Maunsell JHR. Different Inhibitory Interneuron Cell Classes Make Distinct Contributions to Visual Contrast Perception. eNeuro 2019;6:ENEURO. [PMID: 30868104 DOI: 10.1523/ENEURO.0337-18.2019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
|
61 |
Lyngholm D, Sakata S. Cre-Dependent Optogenetic Transgenic Mice Without Early Age-Related Hearing Loss. Front Aging Neurosci 2019;11:29. [PMID: 30863301 DOI: 10.3389/fnagi.2019.00029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
|
62 |
Frangou P, Emir UE, Karlaftis VM, Nettekoven C, Hinson EL, Larcombe S, Bridge H, Stagg CJ, Kourtzi Z. Learning to optimize perceptual decisions through suppressive interactions in the human brain. Nat Commun 2019;10:474. [PMID: 30692533 DOI: 10.1038/s41467-019-08313-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
|
63 |
Li N, Chen S, Guo ZV, Chen H, Huo Y, Inagaki HK, Chen G, Davis C, Hansel D, Guo C, Svoboda K. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. Elife 2019;8. [PMID: 31736463 DOI: 10.7554/eLife.48622] [Cited by in Crossref: 101] [Cited by in F6Publishing: 103] [Article Influence: 25.3] [Reference Citation Analysis]
|
64 |
Kumar M, Xiong S, Tzounopoulos T, Anderson CT. Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex. J Neurosci 2019;39:854-65. [PMID: 30504277 DOI: 10.1523/JNEUROSCI.1339-18.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
|
65 |
Lyngholm D, Sakata S. Cre-dependent optogenetic transgenic mice without early age-related hearing loss.. [DOI: 10.1101/416164] [Reference Citation Analysis]
|
66 |
Natan RG, Rao W, Geffen MN. Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation. Cell Rep 2017;21:878-90. [PMID: 29069595 DOI: 10.1016/j.celrep.2017.10.012] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 10.6] [Reference Citation Analysis]
|
67 |
Phillips EAK, Schreiner CE, Hasenstaub AR. Cortical Interneurons Differentially Regulate the Effects of Acoustic Context. Cell Rep 2017;20:771-8. [PMID: 28746863 DOI: 10.1016/j.celrep.2017.07.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
|
68 |
Histed MH. Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks. eNeuro 2018;5:ENEURO. [PMID: 29682603 DOI: 10.1523/ENEURO.0356-17.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
|
69 |
Ebsch C, Rosenbaum R. Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits. PLoS Comput Biol 2018;14:e1006048. [PMID: 29543827 DOI: 10.1371/journal.pcbi.1006048] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
|
70 |
Clemente-Perez A, Makinson SR, Higashikubo B, Brovarney S, Cho FS, Urry A, Holden SS, Wimer M, Dávid C, Fenno LE, Acsády L, Deisseroth K, Paz JT. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms. Cell Rep 2017;19:2130-42. [PMID: 28591583 DOI: 10.1016/j.celrep.2017.05.044] [Cited by in Crossref: 113] [Cited by in F6Publishing: 120] [Article Influence: 22.6] [Reference Citation Analysis]
|
71 |
Maor I, Shwartz-ziv R, Feigin L, Elyada Y, Sompolinsky H, Mizrahi A. Neural correlates of learning pure tones versus natural sounds in the auditory cortex.. [DOI: 10.1101/273342] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
|
72 |
Moore AK, Weible AP, Balmer TS, Trussell LO, Wehr M. Rapid Rebalancing of Excitation and Inhibition by Cortical Circuitry. Neuron 2018;97:1341-1355.e6. [PMID: 29503186 DOI: 10.1016/j.neuron.2018.01.045] [Cited by in Crossref: 61] [Cited by in F6Publishing: 73] [Article Influence: 12.2] [Reference Citation Analysis]
|
73 |
Krentzel AA, Macedo-Lima M, Ikeda MZ, Remage-Healey L. A Membrane G-Protein-Coupled Estrogen Receptor Is Necessary but Not Sufficient for Sex Differences in Zebra Finch Auditory Coding. Endocrinology 2018;159:1360-76. [PMID: 29351614 DOI: 10.1210/en.2017-03102] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
|
74 |
Wolff SB, Ölveczky BP. The promise and perils of causal circuit manipulations. Curr Opin Neurobiol 2018;49:84-94. [PMID: 29414070 DOI: 10.1016/j.conb.2018.01.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
|
75 |
Hoglen NEG, Larimer P, Phillips EAK, Malone BJ, Hasenstaub AR. Amplitude modulation coding in awake mice and squirrel monkeys. J Neurophysiol 2018;119:1753-66. [PMID: 29364073 DOI: 10.1152/jn.00101.2017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
|
76 |
Briguglio JJ, Aizenberg M, Balasubramanian V, Geffen MN. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation. J Neurosci 2018;38:2094-105. [PMID: 29367406 DOI: 10.1523/JNEUROSCI.2457-17.2017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
|
77 |
Navntoft CA, Adenis V. Does Auditory Cortex Code Temporal Information from Acoustic and Cochlear Implant Stimulation in a Similar Way? J Neurosci 2018;38:260-2. [PMID: 29321145 DOI: 10.1523/JNEUROSCI.2774-17.2017] [Reference Citation Analysis]
|
78 |
David SV. Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding. Hear Res 2018;360:107-23. [PMID: 29331232 DOI: 10.1016/j.heares.2017.12.021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
|
79 |
Garcia Del Molino LC, Yang GR, Mejias JF, Wang XJ. Paradoxical response reversal of top-down modulation in cortical circuits with three interneuron types. Elife 2017;6:e29742. [PMID: 29256863 DOI: 10.7554/eLife.29742] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 5.2] [Reference Citation Analysis]
|
80 |
Blackwell JM, Geffen MN. Progress and challenges for understanding the function of cortical microcircuits in auditory processing. Nat Commun 2017;8:2165. [PMID: 29255268 DOI: 10.1038/s41467-017-01755-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
|
81 |
Fee C, Banasr M, Sibille E. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives. Biol Psychiatry 2017;82:549-59. [PMID: 28697889 DOI: 10.1016/j.biopsych.2017.05.024] [Cited by in Crossref: 184] [Cited by in F6Publishing: 187] [Article Influence: 30.7] [Reference Citation Analysis]
|
82 |
Ebsch C, Rosenbaum R. Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits.. [DOI: 10.1101/201269] [Reference Citation Analysis]
|
83 |
Wood KC, Blackwell JM, Geffen MN. Cortical inhibitory interneurons control sensory processing. Curr Opin Neurobiol 2017;46:200-7. [PMID: 28938181 DOI: 10.1016/j.conb.2017.08.018] [Cited by in Crossref: 71] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
|
84 |
Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O. Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron 2017;95:504-29. [PMID: 28772120 DOI: 10.1016/j.neuron.2017.06.050] [Cited by in Crossref: 185] [Cited by in F6Publishing: 202] [Article Influence: 30.8] [Reference Citation Analysis]
|
85 |
Anderson CT, Kumar M, Xiong S, Tzounopoulos T. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition. Elife 2017;6:e29893. [PMID: 28887876 DOI: 10.7554/eLife.29893] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
|
86 |
Natan RG, Rao W, Geffen MN. Cortical interneurons ensure maintenance of frequency tuning following adaptation.. [DOI: 10.1101/172338] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
|
87 |
Guo W, Clause AR, Barth-Maron A, Polley DB. A Corticothalamic Circuit for Dynamic Switching between Feature Detection and Discrimination. Neuron 2017;95:180-194.e5. [PMID: 28625486 DOI: 10.1016/j.neuron.2017.05.019] [Cited by in Crossref: 109] [Cited by in F6Publishing: 84] [Article Influence: 18.2] [Reference Citation Analysis]
|
88 |
Phillips EAK, Schreiner CE, Hasenstaub AR. Diverse effects of stimulus history in waking mouse auditory cortex. J Neurophysiol 2017;118:1376-93. [PMID: 28566458 DOI: 10.1152/jn.00094.2017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
|
89 |
Angelucci A, Bijanzadeh M, Nurminen L, Federer F, Merlin S, Bressloff PC. Circuits and Mechanisms for Surround Modulation in Visual Cortex. Annu Rev Neurosci 2017;40:425-51. [PMID: 28471714 DOI: 10.1146/annurev-neuro-072116-031418] [Cited by in Crossref: 130] [Cited by in F6Publishing: 141] [Article Influence: 21.7] [Reference Citation Analysis]
|
90 |
Phillips EA, Schreiner CE, Hasenstaub AR. Distinct Regulation of History-dependent Responses by Two Cortical Interneuron Populations.. [DOI: 10.1101/129593] [Reference Citation Analysis]
|
91 |
del Molino LCG, Yang GR, Mejias JF, Wang X. Response reversal during top-down modulation in cortical circuits with multiple interneuron types.. [DOI: 10.1101/124669] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
|
92 |
Briguglio JJ, Aizenberg M, Balasubramanian V, Geffen MN. Cortical neural activity predicts sensory acuity under optogenetic manipulation.. [DOI: 10.1101/119453] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
|