BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Natan RG, Briguglio JJ, Mwilambwe-Tshilobo L, Jones SI, Aizenberg M, Goldberg EM, Geffen MN. Complementary control of sensory adaptation by two types of cortical interneurons. Elife 2015;4:e09868. [PMID: 26460542 DOI: 10.7554/eLife.09868] [Cited by in Crossref: 114] [Cited by in F6Publishing: 125] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Willmore BDB, King AJ. Adaptation in auditory processing. Physiol Rev 2023;103:1025-58. [PMID: 36049112 DOI: 10.1152/physrev.00011.2022] [Reference Citation Analysis]
2 Tasaka GI, Maggi C, Taha E, Mizrahi A. The local and long-range input landscape of inhibitory neurons in mouse auditory cortex. J Comp Neurol 2023;531:502-14. [PMID: 36453284 DOI: 10.1002/cne.25437] [Reference Citation Analysis]
3 Tobin M, Sheth J, Wood KC, Geffen MN. Localist versus distributed representation of sounds in the auditory cortex controlled by distinct inhibitory neuronal subtypes.. [DOI: 10.1101/2023.02.01.526470] [Reference Citation Analysis]
4 Zhou B, Tomioka R, Song W. Temporal profiles of neuronal responses to repeated tone stimuli in the mouse primary auditory cortex. Hearing Research 2023. [DOI: 10.1016/j.heares.2023.108710] [Reference Citation Analysis]
5 Penikis KB, Sanes DH. A Redundant Cortical Code for Speech Envelope. J Neurosci 2023;43:93-112. [PMID: 36379706 DOI: 10.1523/JNEUROSCI.1616-21.2022] [Reference Citation Analysis]
6 Shilling-Scrivo K, Mittelstadt J, Kanold PO. Decreased Modulation of Population Correlations in Auditory Cortex Is Associated with Decreased Auditory Detection Performance in Old Mice. J Neurosci 2022;42:9278-92. [PMID: 36302637 DOI: 10.1523/JNEUROSCI.0955-22.2022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Audette NJ, Zhou W, La Chioma A, Schneider DM. Precise movement-based predictions in the mouse auditory cortex. Curr Biol 2022;32:4925-4940.e6. [PMID: 36283411 DOI: 10.1016/j.cub.2022.09.064] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Hughes C, Kozai T. Biomimetic microstimulation of sensory cortices.. [DOI: 10.1101/2022.11.11.516221] [Reference Citation Analysis]
9 Kumar M, Handy G, Kouvaros S, Ljungqvist Brinson L, Bizup B, Doiron B, Tzounopoulos T. Cell-type-specific roles of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage.. [DOI: 10.1101/2022.09.15.508128] [Reference Citation Analysis]
10 Eckert D, Reichert C, Bien CG, Heinze HJ, Knight RT, Deouell LY, Dürschmid S. Distinct interacting cortical networks for stimulus-response and repetition-suppression. Commun Biol 2022;5:909. [PMID: 36064744 DOI: 10.1038/s42003-022-03861-4] [Reference Citation Analysis]
11 Riedemann T, Sutor B. Cell-type specific effects of somatostatin on corticocortical information processing in the anterior cingulate cortex.. [DOI: 10.1101/2022.08.02.502518] [Reference Citation Analysis]
12 Scarpa GB, Starrett JR, Li GL, Brooks C, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Estrogens rapidly shape synaptic and intrinsic properties to regulate the temporal precision of songbird auditory neurons. Cereb Cortex 2022:bhac280. [PMID: 35849820 DOI: 10.1093/cercor/bhac280] [Reference Citation Analysis]
13 Pérez-González D, Schreiner TG, Llano DA, Malmierca MS. Alzheimer's Disease, Hearing Loss, and Deviance Detection. Front Neurosci 2022;16:879480. [PMID: 35720686 DOI: 10.3389/fnins.2022.879480] [Reference Citation Analysis]
14 Chen C, Xu S, Wang Y, Wang X. Location-Specific Facilitation in Primate Auditory Cortex.. [DOI: 10.1101/2022.06.19.496736] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hughes CL, Flesher SN, Gaunt RA. Effects of stimulus pulse rate on somatosensory adaptation in the human cortex. Brain Stimulation 2022. [DOI: 10.1016/j.brs.2022.05.021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Rupert DD, Shea SD. Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Front Neural Circuits 2022;16:886629. [DOI: 10.3389/fncir.2022.886629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Knyazeva VM, Dmitrieva ES, Polyakova NV, Simon YA, Stankevich LN, Aleksandrov AY, Aleksandrov AA. Stimulus Specific Adaptation Is Affected in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice. J Evol Biochem Phys 2022;58:692-699. [DOI: 10.1134/s0022093022030061] [Reference Citation Analysis]
18 Chaloner FA, Cooke SF. Multiple Mechanistically Distinct Timescales of Neocortical Plasticity Occur During Habituation. Front Cell Neurosci 2022;16:840057. [DOI: 10.3389/fncel.2022.840057] [Reference Citation Analysis]
19 Lakunina AA, Menashe N, Jaramillo S. Contributions of Distinct Auditory Cortical Inhibitory Neuron Types to the Detection of Sounds in Background Noise. eNeuro 2022;9:ENEURO. [PMID: 35168950 DOI: 10.1523/ENEURO.0264-21.2021] [Reference Citation Analysis]
20 Auerbach BD, Gritton HJ. Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 2022;16:799787. [DOI: 10.3389/fnins.2022.799787] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
21 Braga A, Schönwiesner M. Neural Substrates and Models of Omission Responses and Predictive Processes. Front Neural Circuits 2022;16:799581. [DOI: 10.3389/fncir.2022.799581] [Reference Citation Analysis]
22 Homann J, Koay SA, Chen KS, Tank DW, Berry MJ. Novel stimuli evoke excess activity in the mouse primary visual cortex. Proc Natl Acad Sci USA 2022;119:e2108882119. [DOI: 10.1073/pnas.2108882119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Eggermont JJ. Top-down tinnitus models. Tinnitus and Hyperacusis 2022. [DOI: 10.1016/b978-0-323-91912-8.00012-8] [Reference Citation Analysis]
24 De Franceschi G, Barkat TR. Task-induced modulations of neuronal activity along the auditory pathway. Cell Rep 2021;37:110115. [PMID: 34910908 DOI: 10.1016/j.celrep.2021.110115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Hughes CL, Flesher SN, Gaunt RA. Effects of stimulus pulse rate on somatosensory adaptation in the human cortex.. [DOI: 10.1101/2021.12.04.471210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Studer F, Barkat TR. Inhibition in the auditory cortex. Neurosci Biobehav Rev 2021;132:61-75. [PMID: 34822879 DOI: 10.1016/j.neubiorev.2021.11.021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Ivanov AZ, King AJ, Willmore BD, Walker KM, Harper NS. Cortical adaptation to sound reverberation.. [DOI: 10.1101/2021.10.28.466271] [Reference Citation Analysis]
28 Agarwalla S, Bandyopadhyay S. Social experience dependent plasticity of mouse song selectivity without that of song components.. [DOI: 10.1101/2021.10.26.466011] [Reference Citation Analysis]
29 Schulz A, Miehl C, Berry MJ 2nd, Gjorgjieva J. The generation of cortical novelty responses through inhibitory plasticity. Elife 2021;10:e65309. [PMID: 34647889 DOI: 10.7554/eLife.65309] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
30 Baruchin LJ, Ghezzi F, Kohl MM, Butt SJB. Contribution of Interneuron Subtype-Specific GABAergic Signaling to Emergent Sensory Processing in Mouse Somatosensory Whisker Barrel Cortex. Cereb Cortex 2021:bhab363. [PMID: 34613375 DOI: 10.1093/cercor/bhab363] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Todd J, Yeark MD, Paton B, Jermyn A, Winkler I. Shorter Contextual Timescale Rather Than Memory Deficit in Aging. Cereb Cortex 2021:bhab344. [PMID: 34564713 DOI: 10.1093/cercor/bhab344] [Reference Citation Analysis]
32 Nocon JC, Gritton HJ, James NM, Han X, Sen K. Parvalbumin neurons, temporal coding, and cortical noise in complex scene analysis.. [DOI: 10.1101/2021.09.11.459906] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Jimenez-Martin J, Potapov D, Potapov K, Knöpfel T, Empson RM. Cholinergic modulation of sensory processing in awake mouse cortex. Sci Rep 2021;11:17525. [PMID: 34471145 DOI: 10.1038/s41598-021-96696-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 Williams RH, Riedemann T. Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021;22:9297. [PMID: 34502208 DOI: 10.3390/ijms22179297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Romero-Sosa JL, Motanis H, Buonomano DV. Differential Excitability of PV and SST Neurons Results in Distinct Functional Roles in Inhibition Stabilization of Up States. J Neurosci 2021;41:7182-96. [PMID: 34253625 DOI: 10.1523/JNEUROSCI.2830-20.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Lakunina AA, Menashe N, Jaramillo S. Contributions of distinct auditory cortical inhibitory neuron types to the detection of sounds in background noise.. [DOI: 10.1101/2021.06.12.448208] [Reference Citation Analysis]
37 Herrmann B, Butler BE. Hearing loss and brain plasticity: the hyperactivity phenomenon. Brain Struct Funct 2021;226:2019-39. [PMID: 34100151 DOI: 10.1007/s00429-021-02313-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
38 Carreño-muñoz MI, Chattopadhyaya B, Agbogba K, Côté V, Wang S, Lévesque M, Avoli M, Michaud JL, Lippé S, Di Cristo G. Sensory processing dysregulations as reliable translational biomarkers in SYNGAP1 haploinsufficiency.. [DOI: 10.1101/2021.04.28.441866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Lesicko AM, Angeloni CF, Blackwell JM, De Biasi M, Geffen MN. Cortico-Fugal Regulation of Predictive Coding.. [DOI: 10.1101/2021.04.12.439188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Hamm JP, Shymkiv Y, Han S, Yang W, Yuste R. Cortical ensembles selective for context. Proc Natl Acad Sci U S A 2021;118:e2026179118. [PMID: 33811144 DOI: 10.1073/pnas.2026179118] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
41 Asokan MM, Williamson RS, Hancock KE, Polley DB. Inverted central auditory hierarchies for encoding local intervals and global temporal patterns. Curr Biol 2021;31:1762-1770.e4. [PMID: 33609455 DOI: 10.1016/j.cub.2021.01.076] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
42 Baruchin LJ, Kohl MM, Butt SJ. Contribution of interneuron subtype-specific GABAergic signalling to emergent sensory processing in somatosensory whisker barrel cortex in mouse.. [DOI: 10.1101/2021.02.18.431791] [Reference Citation Analysis]
43 Liu J, Kanold PO. Diversity of Receptive Fields and Sideband Inhibition with Complex Thalamocortical and Intracortical Origin in L2/3 of Mouse Primary Auditory Cortex. J Neurosci 2021;41:3142-62. [PMID: 33593857 DOI: 10.1523/JNEUROSCI.1732-20.2021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
44 Resnik J, Polley DB. Cochlear neural degeneration disrupts hearing in background noise by increasing auditory cortex internal noise. Neuron 2021;109:984-996.e4. [PMID: 33561398 DOI: 10.1016/j.neuron.2021.01.015] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 16.5] [Reference Citation Analysis]
45 Herrmann B, Butler BE. Aging auditory cortex. Assessments, Treatments and Modeling in Aging and Neurological Disease 2021. [DOI: 10.1016/b978-0-12-818000-6.00017-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Schulz A, Miehl C, Berry MJ, Gjorgjieva J. The generation of cortical novelty responses through inhibitory plasticity.. [DOI: 10.1101/2020.11.30.403840] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Romero-sosa JL, Motanis H, Buonomano DV. Differential excitability of PV and SST neurons results in distinct functional roles in inhibition stabilization of Up-states.. [DOI: 10.1101/2020.11.26.395343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
48 Pennington JR, David SV. Complementary Effects of Adaptation and Gain Control on Sound Encoding in Primary Auditory Cortex. eNeuro 2020;7:ENEURO. [PMID: 33109632 DOI: 10.1523/ENEURO.0205-20.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
49 Seay MJ, Natan RG, Geffen MN, Buonomano DV. Differential Short-Term Plasticity of PV and SST Neurons Accounts for Adaptation and Facilitation of Cortical Neurons to Auditory Tones. J Neurosci 2020;40:9224-35. [PMID: 33097639 DOI: 10.1523/JNEUROSCI.0686-20.2020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
50 Park Y, Geffen MN. A circuit model of auditory cortex. PLoS Comput Biol 2020;16:e1008016. [PMID: 32716912 DOI: 10.1371/journal.pcbi.1008016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
51 Parras GG, Valdés-Baizabal C, Harms L, Michie PT, Malmierca MS. The effect of NMDA-R antagonist, MK-801, on neuronal mismatch along the rat auditory thalamocortical pathway. Sci Rep 2020;10:12391. [PMID: 32709861 DOI: 10.1038/s41598-020-68837-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
52 Zhai YY, Auksztulewicz R, Song PR, Sun ZH, Gong YM, Du XY, He J, Yu X. Synaptic Adaptation Contributes to Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus. Neurosci Bull 2020;36:1538-41. [PMID: 32557078 DOI: 10.1007/s12264-020-00536-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Herrmann B, Augereau T, Johnsrude IS. Neural Responses and Perceptual Sensitivity to Sound Depend on Sound-Level Statistics. Sci Rep 2020;10:9571. [PMID: 32533068 DOI: 10.1038/s41598-020-66715-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
54 Amsalem O, King J, Reimann M, Ramaswamy S, Muller E, Markram H, Nelken I, Segev I. Dense Computer Replica of Cortical Microcircuits Unravels Cellular Underpinnings of Auditory Surprise Response.. [DOI: 10.1101/2020.05.31.126466] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
55 Saderi D, Buran BN, David SV. Streaming of Repeated Noise in Primary and Secondary Fields of Auditory Cortex. J Neurosci 2020;40:3783-98. [PMID: 32273487 DOI: 10.1523/JNEUROSCI.2105-19.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
56 Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020;14:13. [PMID: 32296311 DOI: 10.3389/fncir.2020.00013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
57 Lakunina AA, Nardoci MB, Ahmadian Y, Jaramillo S. Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround. J Neurosci 2020;40:3564-75. [PMID: 32220950 DOI: 10.1523/JNEUROSCI.1735-19.2020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
58 Cooke JE, Kahn MC, Mann EO, King AJ, Schnupp JWH, Willmore BDB. Contrast gain control occurs independently of both parvalbumin-positive interneuron activity and shunting inhibition in auditory cortex. J Neurophysiol 2020;123:1536-51. [PMID: 32186432 DOI: 10.1152/jn.00587.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
59 Pennington J, David S. Complementary effects of adaptation and gain control on sound encoding in primary auditory cortex.. [DOI: 10.1101/2020.01.14.905000] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
60 Cisneros-franco JM, Thomas ME, Regragui I, Lane CP, Ouellet L, de Villers-sidani É. Regulation of perceptual learning by chronic chemogenetic manipulation of parvalbumin-positive interneurons.. [DOI: 10.1101/2020.01.13.905257] [Reference Citation Analysis]
61 Helfer KS, Bartlett EL. Listening to All Voices: Interdisciplinary Approaches to Understanding Hearing in Aging. Aging and Hearing 2020. [DOI: 10.1007/978-3-030-49367-7_1] [Reference Citation Analysis]
62 Malone BJ, Hasenstaub AR, Schreiner CE. Primary Auditory Cortex II. Some Functional Considerations. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24268-5] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
63 Kopp-scheinpflug C, Linden JF. Coding of Temporal Information. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24255-7] [Reference Citation Analysis]
64 King AJ. Feedback Systems: Descending Pathways and Adaptive Coding in the Auditory System. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24188-6] [Reference Citation Analysis]
65 Clemens J, Hennig RM. Coding Strategies in Insects. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-809324-5.24184-9] [Reference Citation Analysis]
66 Wen TH, Afroz S, Reinhard SM, Palacios AR, Tapia K, Binder DK, Razak KA, Ethell IM. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice. Cereb Cortex 2018;28:3951-64. [PMID: 29040407 DOI: 10.1093/cercor/bhx258] [Cited by in Crossref: 72] [Cited by in F6Publishing: 81] [Article Influence: 18.0] [Reference Citation Analysis]
67 Knöpfel T, Sweeney Y, Radulescu CI, Zabouri N, Doostdar N, Clopath C, Barnes SJ. Audio-visual experience strengthens multisensory assemblies in adult mouse visual cortex. Nat Commun 2019;10:5684. [PMID: 31831751 DOI: 10.1038/s41467-019-13607-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
68 Herrmann B, Augereau T, Johnsrude IS. Neural Responses and Perceptual Sensitivity to Sound Depend on Sound-Level Statistics.. [DOI: 10.1101/850339] [Reference Citation Analysis]
69 Lopez Espejo M, Schwartz ZP, David SV. Spectral tuning of adaptation supports coding of sensory context in auditory cortex. PLoS Comput Biol 2019;15:e1007430. [PMID: 31626624 DOI: 10.1371/journal.pcbi.1007430] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
70 Soyman E, Vicario DS. Rapid and long-lasting improvements in neural discrimination of acoustic signals with passive familiarization. PLoS One 2019;14:e0221819. [PMID: 31465431 DOI: 10.1371/journal.pone.0221819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
71 Saderi D, Buran BN, David SV. Streaming of repeated noise in primary and secondary fields of auditory cortex.. [DOI: 10.1101/738583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
72 Sikkens T, Bosman CA, Olcese U. The Role of Top-Down Modulation in Shaping Sensory Processing Across Brain States: Implications for Consciousness. Front Syst Neurosci 2019;13:31. [PMID: 31680883 DOI: 10.3389/fnsys.2019.00031] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
73 Fishell G, Kepecs A. Interneuron Types as Attractors and Controllers. Annu Rev Neurosci 2020;43:1-30. [PMID: 31299170 DOI: 10.1146/annurev-neuro-070918-050421] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 18.5] [Reference Citation Analysis]
74 Riedemann T. Diversity and Function of Somatostatin-Expressing Interneurons in the Cerebral Cortex. Int J Mol Sci 2019;20:E2952. [PMID: 31212931 DOI: 10.3390/ijms20122952] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
75 Dematties D, Rizzi S, Thiruvathukal GK, Wainselboim A, Zanutto BS. Phonetic acquisition in cortical dynamics, a computational approach. PLoS One 2019;14:e0217966. [PMID: 31173613 DOI: 10.1371/journal.pone.0217966] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
76 Libby A, Buschman TJ. Rotational Dynamics Reduce Interference Between Sensory and Memory Representations.. [DOI: 10.1101/641159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
77 Parras GG, Valdés-baizabal C, Harms L, Michie P, Malmierca MS. The effect of NMDA-R antagonist, MK-801, on neuronal mismatch along the auditory thalamocortical pathway.. [DOI: 10.1101/636068] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
78 Park Y, Geffen MN. A Circuit Model of Auditory Cortex.. [DOI: 10.1101/626358] [Reference Citation Analysis]
79 Carbajal GV, Malmierca MS. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear 2018;22:2331216518784822. [PMID: 30022729 DOI: 10.1177/2331216518784822] [Cited by in Crossref: 50] [Cited by in F6Publishing: 62] [Article Influence: 12.5] [Reference Citation Analysis]
80 Ghodrati M, Zavitz E, Rosa MGP, Price NSC. Contrast and luminance adaptation alter neuronal coding and perception of stimulus orientation. Nat Commun 2019;10:941. [PMID: 30808863 DOI: 10.1038/s41467-019-08894-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
81 Espejo ML, Schwartz ZP, David SV. Spectral tuning of adaptation supports coding of sensory context in auditory cortex.. [DOI: 10.1101/534537] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
82 Lau JCY, Wong PCM, Chandrasekaran B. Interactive effects of linguistic abstraction and stimulus statistics in the online modulation of neural speech encoding. Atten Percept Psychophys 2019;81:1020-33. [PMID: 30565097 DOI: 10.3758/s13414-018-1621-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
83 Hamm JP, Shymkiv Y, Han S, Yang W, Yuste R. Cortical subnetworks encode context of visual stimulus.. [DOI: 10.1101/452219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
84 King AJ, Teki S, Willmore BDB. Recent advances in understanding the auditory cortex. F1000Res 2018;7:F1000 Faculty Rev-1555. [PMID: 30345008 DOI: 10.12688/f1000research.15580.1] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
85 Motanis H, Seay MJ, Buonomano DV. Short-Term Synaptic Plasticity as a Mechanism for Sensory Timing. Trends Neurosci 2018;41:701-11. [PMID: 30274605 DOI: 10.1016/j.tins.2018.08.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
86 Kuravi P, Vogels R. GABAergic and cholinergic modulation of repetition suppression in inferior temporal cortex. Sci Rep 2018;8:13160. [PMID: 30177749 DOI: 10.1038/s41598-018-31515-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
87 Schwartz ZP, David SV. Focal Suppression of Distractor Sounds by Selective Attention in Auditory Cortex. Cereb Cortex 2018;28:323-39. [PMID: 29136104 DOI: 10.1093/cercor/bhx288] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
88 Osterhagen L, Hildebrandt KJ. Ultra-fine temporal resolution in auditory processing is preserved in aged mice without peripheral hearing loss.. [DOI: 10.1101/363994] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
89 Natan RG, Rao W, Geffen MN. Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation. Cell Rep 2017;21:878-90. [PMID: 29069595 DOI: 10.1016/j.celrep.2017.10.012] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 10.6] [Reference Citation Analysis]
90 Briguglio JJ, Aizenberg M, Balasubramanian V, Geffen MN. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation. J Neurosci 2018;38:2094-105. [PMID: 29367406 DOI: 10.1523/JNEUROSCI.2457-17.2017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
91 Maor I, Shalev A, Mizrahi A. Distinct Spatiotemporal Response Properties of Excitatory Versus Inhibitory Neurons in the Mouse Auditory Cortex. Cereb Cortex 2016;26:4242-52. [PMID: 27600839 DOI: 10.1093/cercor/bhw266] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 6.2] [Reference Citation Analysis]
92 David SV. Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding. Hear Res 2018;360:107-23. [PMID: 29331232 DOI: 10.1016/j.heares.2017.12.021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
93 Blackwell JM, Geffen MN. Progress and challenges for understanding the function of cortical microcircuits in auditory processing. Nat Commun 2017;8:2165. [PMID: 29255268 DOI: 10.1038/s41467-017-01755-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
94 Ponzi A. Sensory Stream Adaptation in Chaotic Networks. Sci Rep 2017;7:16844. [PMID: 29203867 DOI: 10.1038/s41598-017-16478-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
95 Angeloni C, Geffen MN. Contextual modulation of sound processing in the auditory cortex. Curr Opin Neurobiol 2018;49:8-15. [PMID: 29125987 DOI: 10.1016/j.conb.2017.10.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
96 Wood KC, Blackwell JM, Geffen MN. Cortical inhibitory interneurons control sensory processing. Curr Opin Neurobiol 2017;46:200-7. [PMID: 28938181 DOI: 10.1016/j.conb.2017.08.018] [Cited by in Crossref: 71] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
97 Rummell BP, Klee JL, Sigurdsson T. Attenuation of Responses to Self-Generated Sounds in Auditory Cortical Neurons. J Neurosci 2016;36:12010-26. [PMID: 27881785 DOI: 10.1523/JNEUROSCI.1564-16.2016] [Cited by in Crossref: 60] [Cited by in F6Publishing: 66] [Article Influence: 10.0] [Reference Citation Analysis]
98 Natan RG, Rao W, Geffen MN. Cortical interneurons ensure maintenance of frequency tuning following adaptation.. [DOI: 10.1101/172338] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
99 Whitmire CJ, Stanley GB. Rapid Sensory Adaptation Redux: A Circuit Perspective. Neuron 2016;92:298-315. [PMID: 27764664 DOI: 10.1016/j.neuron.2016.09.046] [Cited by in Crossref: 69] [Cited by in F6Publishing: 78] [Article Influence: 11.5] [Reference Citation Analysis]
100 Libé-Philippot B, Michel V, Boutet de Monvel J, Le Gal S, Dupont T, Avan P, Métin C, Michalski N, Petit C. Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. Proc Natl Acad Sci U S A 2017;114:7765-74. [PMID: 28705869 DOI: 10.1073/pnas.1703408114] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 4.8] [Reference Citation Analysis]
101 Phillips MG, Lenzi SC, Geerts JP. Cortical Predictive Mechanisms of Auditory Response Attenuation to Self-Generated Sounds. J Neurosci 2017;37:5393-4. [PMID: 28566419 DOI: 10.1523/JNEUROSCI.0216-17.2017] [Reference Citation Analysis]
102 Natan RG, Carruthers IM, Mwilambwe-Tshilobo L, Geffen MN. Gain Control in the Auditory Cortex Evoked by Changing Temporal Correlation of Sounds. Cereb Cortex 2017;27:2385-402. [PMID: 27095823 DOI: 10.1093/cercor/bhw083] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
103 Phillips EA, Schreiner CE, Hasenstaub AR. Distinct Regulation of History-dependent Responses by Two Cortical Interneuron Populations.. [DOI: 10.1101/129593] [Reference Citation Analysis]
104 Briguglio JJ, Aizenberg M, Balasubramanian V, Geffen MN. Cortical neural activity predicts sensory acuity under optogenetic manipulation.. [DOI: 10.1101/119453] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
105 Okamoto H, Kakigi R. Modulation of Auditory Evoked Magnetic Fields Elicited by Successive Frequency-Modulated (FM) Sweeps. Front Hum Neurosci 2017;11. [DOI: 10.3389/fnhum.2017.00036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
106 Sekiya K, Takahashi M, Murakami S, Kakigi R, Okamoto H. Broadened population-level frequency tuning in the auditory cortex of tinnitus patients. J Neurophysiol 2017;117:1379-84. [PMID: 28053240 DOI: 10.1152/jn.00385.2016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
107 Southwell R, Baumann A, Gal C, Barascud N, Friston K, Chait M. Is predictability salient? A study of attentional capture by auditory patterns. Philos Trans R Soc Lond B Biol Sci 2017;372:20160105. [PMID: 28044016 DOI: 10.1098/rstb.2016.0105] [Cited by in Crossref: 72] [Cited by in F6Publishing: 83] [Article Influence: 12.0] [Reference Citation Analysis]
108 Pinotsis DA, Geerts JP, Pinto L, FitzGerald THB, Litvak V, Auksztulewicz R, Friston KJ. Linking canonical microcircuits and neuronal activity: Dynamic causal modelling of laminar recordings. Neuroimage 2017;146:355-66. [PMID: 27871922 DOI: 10.1016/j.neuroimage.2016.11.041] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
109 Lau JC, Wong PC, Chandrasekaran B. Context-dependent plasticity in the subcortical encoding of linguistic pitch patterns. J Neurophysiol 2017;117:594-603. [PMID: 27832606 DOI: 10.1152/jn.00656.2016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
110 Phillips EA, Hasenstaub AR. Asymmetric effects of activating and inactivating cortical interneurons. Elife 2016;5:e18383. [PMID: 27719761 DOI: 10.7554/eLife.18383] [Cited by in Crossref: 77] [Cited by in F6Publishing: 95] [Article Influence: 11.0] [Reference Citation Analysis]
111 Yavorska I, Wehr M. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits. Front Neural Circuits. 2016;10:76. [PMID: 27746722 DOI: 10.3389/fncir.2016.00076] [Cited by in Crossref: 105] [Cited by in F6Publishing: 116] [Article Influence: 15.0] [Reference Citation Analysis]
112 Hamm JP, Yuste R. Somatostatin Interneurons Control a Key Component of Mismatch Negativity in Mouse Visual Cortex. Cell Rep 2016;16:597-604. [PMID: 27396334 DOI: 10.1016/j.celrep.2016.06.037] [Cited by in Crossref: 83] [Cited by in F6Publishing: 68] [Article Influence: 11.9] [Reference Citation Analysis]
113 Nieto-Diego J, Malmierca MS. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat. PLoS Biol 2016;14:e1002397. [PMID: 26950883 DOI: 10.1371/journal.pbio.1002397] [Cited by in Crossref: 67] [Cited by in F6Publishing: 74] [Article Influence: 9.6] [Reference Citation Analysis]
114 Blackwell JM, Taillefumier TO, Natan RG, Carruthers IM, Magnasco MO, Geffen MN. Stable encoding of sounds over a broad range of statistical parameters in the auditory cortex. Eur J Neurosci 2016;43:751-64. [PMID: 26663571 DOI: 10.1111/ejn.13144] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
115 Carruthers IM, Laplagne DA, Jaegle A, Briguglio JJ, Mwilambwe-Tshilobo L, Natan RG, Geffen MN. Emergence of invariant representation of vocalizations in the auditory cortex. J Neurophysiol 2015;114:2726-40. [PMID: 26311178 DOI: 10.1152/jn.00095.2015] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 4.6] [Reference Citation Analysis]