1 |
Duan S, Xia Y, Tian X, Cui J, Zhang X, Yang Q, Zhao T, Lin Y, Zhang F, Zhang X, Cen J. A multi-bioresponsive self-assembled nano drug delivery system based on hyaluronic acid and geraniol against liver cancer. Carbohydr Polym 2023;310:120695. [PMID: 36925236 DOI: 10.1016/j.carbpol.2023.120695] [Reference Citation Analysis]
|
2 |
Lai C, Zhang B, Li D, Tan X, Luo B, Shen J, Li L, Shao J. Rational design of a minimum nanoplatform for maximizing therapeutic potency: Three birds with one stone. J Colloid Interface Sci 2023;635:441-55. [PMID: 36599242 DOI: 10.1016/j.jcis.2022.12.157] [Reference Citation Analysis]
|
3 |
Gong J, Shi T, Liu J, Pei Z, Liu J, Ren X, Li F, Qiu F. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023;161:114505. [PMID: 36921532 DOI: 10.1016/j.biopha.2023.114505] [Reference Citation Analysis]
|
4 |
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023;355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Reference Citation Analysis]
|
5 |
Ebadi M, Rifqi Md Zain A, Tengku Abdul Aziz TH, Mohammadi H, Tee CAT, Rahimi Yusop M. Formulation and Characterization of Fe(3)O(4)@PEG Nanoparticles Loaded Sorafenib; Molecular Studies and Evaluation of Cytotoxicity in Liver Cancer Cell Lines. Polymers (Basel) 2023;15. [PMID: 36850253 DOI: 10.3390/polym15040971] [Reference Citation Analysis]
|
6 |
Elleithi Y, El-gayar A, Amin MN. Autophagy Modulation Attenuates Sorafenib Resistance In HCC Induced In Rats.. [DOI: 10.21203/rs.3.rs-2573418/v1] [Reference Citation Analysis]
|
7 |
Fang M, Liu M, Cheng M, Zhao T, Xu P, Cai W, Li X, Yan W. Asymmetric Mesoporous Nanoformulation for Combination Treatment of Soft Tissue Sarcoma. ACS Materials Lett 2023. [DOI: 10.1021/acsmaterialslett.2c01079] [Reference Citation Analysis]
|
8 |
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29(4): 616-655 [DOI: 10.3748/wjg.v29.i4.616] [Reference Citation Analysis]
|
9 |
Kong F, Ye Q, Xiong Y. Comprehensive analysis of prognosis and immune function of CD70-CD27 signaling axis in pan-cancer. Funct Integr Genomics 2023;23:48. [PMID: 36700974 DOI: 10.1007/s10142-023-00977-6] [Reference Citation Analysis]
|
10 |
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023;187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol 2023;14:1111991. [PMID: 36874010 DOI: 10.3389/fphar.2023.1111991] [Reference Citation Analysis]
|
12 |
Kuzmanović A, Lin C, Bartneck M. Liver Cancer and the Curative Potential of Nanomedicine. Interdisciplinary Cancer Research 2023. [DOI: 10.1007/16833_2023_129] [Reference Citation Analysis]
|
13 |
Lu Y, Gao Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil Med Res 2022;9:69. [PMID: 36503490 DOI: 10.1186/s40779-022-00433-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
|
14 |
Ling J, Jiang Y, Yan S, Dang H, Yue H, Liu K, Kuang L, Liu X, Tang H. A novel pH- and glutathione-responsive drug delivery system based on in situ growth of MOF199 on mesoporous organic silica nanoparticles targeting the hepatocellular carcinoma niche. Cancer Nano 2022;13. [DOI: 10.1186/s12645-022-00139-6] [Reference Citation Analysis]
|
15 |
Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022;16:100358. [PMID: 35880099 DOI: 10.1016/j.mtbio.2022.100358] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
16 |
Song C, Zhang J, Wen R, Li Q, Zhou J, Xiaoli Liu, Wu Z, Lv Y, Wu R. Improved anti-hepatocellular carcinoma effect by enhanced Co-delivery of Tim-3 siRNA and sorafenib via multiple pH triggered drug-eluting nanoparticles. Mater Today Bio 2022;16:100350. [PMID: 35856043 DOI: 10.1016/j.mtbio.2022.100350] [Reference Citation Analysis]
|
17 |
Teng C, Kong F, Mo J, Lin W, Jin C, Wang K, Wang Y. The roles of RNA N6-methyladenosine in esophageal cancer. Heliyon 2022. [DOI: 10.1016/j.heliyon.2022.e11430] [Reference Citation Analysis]
|
18 |
Zou Y, Jiang G, Xie Y, Li H. m6A-Related Genes Contribute to Poor Prognosis of Hepatocellular Carcinoma. Computational and Mathematical Methods in Medicine 2022;2022:1-19. [DOI: 10.1155/2022/2427987] [Reference Citation Analysis]
|
19 |
Xie M, Fu Z, Hua A, Zhou J, Chen Q, Li J, Yao S, Cai X, Ge M, Zhou L, Wu J. A new core–shell-type nanoparticle loaded with paclitaxel/norcantharidin and modified with APRPG enhances anti-tumor effects in hepatocellular carcinoma. Front Oncol 2022;12:932156. [DOI: 10.3389/fonc.2022.932156] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
20 |
Kong F, Wang K. Systematic analysis of the expression profile and prognostic significance of m6A regulators and PD-L1 in hepatocellular carcinoma.. [DOI: 10.21203/rs.3.rs-1992254/v1] [Reference Citation Analysis]
|
21 |
Kong F, Xiong Y, Ye Q. Comprehensive Analysis of Prognosis and Immune Function of CD70-CD27 Signaling Axis in Pan-Cancer.. [DOI: 10.21203/rs.3.rs-1949691/v1] [Reference Citation Analysis]
|
22 |
Xia Z, Kong F, Wang K, Zhang X. Role of N6-Methyladenosine Methylation Regulators in the Drug Therapy of Digestive System Tumours. Front Pharmacol 2022;13:908079. [PMID: 35754499 DOI: 10.3389/fphar.2022.908079] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
23 |
Yang X, Xiao J, Jiang L, Ran L, Fan Y, Zhang M, Xu Y, Yao C, An B, Yang Y, Yang C, Tian G, Zhang G, Zhang Y. A Multifunctional Vanadium-Iron-Oxide Nanoparticle Eradicates Hepatocellular Carcinoma via Targeting Tumor and Endothelial Cells. ACS Appl Mater Interfaces 2022. [PMID: 35698257 DOI: 10.1021/acsami.2c03474] [Reference Citation Analysis]
|
24 |
Gopakumar L, Sreeranganathan M, Chappan S, James S, Gowd GS, Manohar M, Sukumaran A, Unni AKK, Nair SV, Koyakutty M. Enhanced oral bioavailability and antitumor therapeutic efficacy of sorafenib administered in core-shell protein nanoparticle. Drug Deliv Transl Res 2022. [PMID: 35678961 DOI: 10.1007/s13346-022-01142-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Zhou X, Fu Y, Liu W, Mu Y, Zhang H, Chen J, Liu P. Ferroptosis in Chronic Liver Diseases: Opportunities and Challenges. Front Mol Biosci 2022;9:928321. [DOI: 10.3389/fmolb.2022.928321] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
26 |
Graur F, Puia A, Mois EI, Moldovan S, Pusta A, Cristea C, Cavalu S, Puia C, Al Hajjar N. Nanotechnology in the Diagnostic and Therapy of Hepatocellular Carcinoma. Materials 2022;15:3893. [DOI: 10.3390/ma15113893] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Xu H, Ma Z, Mo X, Chen X, Xu F, Wu F, Chen H, Zhou G, Xia H, Zhang C. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer 2022;13:2226-37. [PMID: 35517402 DOI: 10.7150/jca.66020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Zhou S, Ma Y, Xu R, Tang X. Nanoparticles Loaded with GSK1059615 Combined with Sorafenib Inhibited Programmed Cell Death 1 Ligand 1 Expression by Negatively Regulating the PI3K/Akt/NF-κB Pathway, Thereby Reversing the Drug Resistance of Hepatocellular Carcinoma to Sorafenib. J Biomed Nanotechnol 2022;18:693-704. [PMID: 35715918 DOI: 10.1166/jbn.2022.3279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
29 |
Huang W, Kong F, Li R, Chen X, Wang K. Emerging Roles of m6A RNA Methylation Regulators in Gynecological Cancer. Front Oncol 2022;12:827956. [PMID: 35155260 DOI: 10.3389/fonc.2022.827956] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
30 |
Yue H, Gou L, Tang Z, Liu Y, Liu S, Tang H. Construction of pH-responsive nanocarriers in combination with ferroptosis and chemotherapy for treatment of hepatocellular carcinoma. Cancer Nano 2022;13. [DOI: 10.1186/s12645-022-00111-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Yang Z, Deng W, Zhang X, An Y, Liu Y, Yao H, Zhang Z. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies. Front Oncol 2021;11:789330. [PMID: 35083147 DOI: 10.3389/fonc.2021.789330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
32 |
Mittal D, Niveria K, Verma AK. Nanotechnology-based targeted delivery systems for protein kinase inhibitors in Cancer therapy. Protein Kinase Inhibitors 2022. [DOI: 10.1016/b978-0-323-91287-7.00005-3] [Reference Citation Analysis]
|
33 |
Bieniek A, Wiśniewski M, Czarnecka J, Wierzbicki J, Ziętek M, Nowacki M, Grzanka D, Kloskowski T, Roszek K. Porphyrin Based 2D-MOF Structures as Dual-Kinetic Sorafenib Nanocarriers for Hepatoma Treatment. Int J Mol Sci 2021;22:11161. [PMID: 34681820 DOI: 10.3390/ijms222011161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
34 |
Huber TC, Bochnakova T, Koethe Y, Park B, Farsad K. Percutaneous Therapies for Hepatocellular Carcinoma: Evolution of Liver Directed Therapies. J Hepatocell Carcinoma 2021;8:1181-93. [PMID: 34589446 DOI: 10.2147/JHC.S268300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
35 |
Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021;9:733792. [PMID: 34557478 DOI: 10.3389/fbioe.2021.733792] [Reference Citation Analysis]
|
36 |
Ding Y, Cui W, Vara Prasad CVNS, Wang B. Design and Synthesis of Lactose, Galactose and Cholic Acid Related Dual Conjugated Chitosan Derivatives as Potential Anti Liver Cancer Drug Carriers. Polymers (Basel) 2021;13:2939. [PMID: 34502978 DOI: 10.3390/polym13172939] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|